首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用OM、SEM和XRD等方法研究了固溶时效热处理对近β型钛合金(Ti-3Al-6Mo-2Fe-Zr)显微组织、力学性能及耐腐蚀性能的影响。结果表明,随着固溶温度的升高,初生α相的含量逐渐降低,经930 ℃固溶处理后,合金为单一β相。固溶温度在830 ℃以下时,随着固溶温度的升高,初生α相逐渐转变为β相,第二相强化作用减弱,合金强度逐渐降低,塑性逐渐提高,断裂方式为微孔聚集型;固溶温度在830 ℃以上时,随着固溶温度的升高,β相晶粒逐渐粗化,合金强度降低,塑性下降,断裂方式由微孔聚集型断裂向解理断裂转变。随着固溶温度从780 ℃升高至930 ℃,初生α相的含量降低,β/α相界逐渐减少,耐腐蚀性能提升。经780 ℃固溶1 h(水冷),500 ℃ 时效6 h(随炉冷却)处理后,细小针状的次生α相于亚稳β相中沉淀析出,合金强度显著提高,但塑性下降。  相似文献   

2.
研究了不同温度的固溶和时效工艺对TC6钛合金显微组织和性能的影响。结果表明:800~840℃固溶后,合金由初生α相和亚稳β相组成,两相随着温度升高而长大,合金强度和塑性略有上升;880℃固溶后,亚稳β相依然保留到室温,然而在拉伸过程中出现应力诱变斜方马氏体α″相,导致双屈服现象;920~960℃固溶后,初生α相减少,大量的细针状斜方马氏体α″相在亚稳β相上析出,强度上升塑性下降;当超过β相变点固溶后,主要由粗大针状六方马氏体α?相组成,强度下降同时拉伸为脆性断裂。对于固溶样品经过不同温度时效处理,主要变化过程是亚稳β相分解为次生α相及其长大,300℃时效后,相比固溶态强度上升但塑性下降,亚稳β相中弥散析出次生α相及少量的ω相;当时效温度升高到400℃,强度继续上升接近最大值但塑性最差;500℃时效后,强度最高然而合金元素充分扩散,塑性得到提升;550℃时效后,强度有所下降但塑性明显提升,此时具有较佳的强塑性匹配;600~700℃时效后,初生α相聚集长大并且含量增加,次生α相在β基体上析出且逐渐长大为层片状,强度下降塑性进一步提升。  相似文献   

3.
依据d-电子理论设计了低弹性模量、中高强度、良好塑性和生物相容性的新型生物医用近β型Ti35Nb2-Sn6Zr3Mo合金,研究了固溶温度和时效温度对合金组织和力学性能的影响.结果表明:随固溶温度的升高,合金的平均晶粒尺寸逐渐增大,650℃以上固溶时,得到单一等轴β晶组织;固溶温度对合金的强度和弹性模量的影响并不明显.随时效温度的升高,由于Ti35Nb2Sn6Zr3Mo合金的β相稳定性较强,析出α相的含量较少,从而导致合金的力学性能对时效温度并不敏感.  相似文献   

4.
研究了TC11钛合金β锻造和固溶温度对组织和力学性能的影响。结果表明:β转变温度以下35℃锻造后,其显微组织中的初生α相含量显著减少,合金强度下降,塑性升高;固溶温度对合金组织影响显著,随固溶温度升高,其显微组织中的初生α相含量减少,合金的强度下降,塑性先升高后下降,960℃时达到最大值。  相似文献   

5.
周伟  葛鹏  赵永庆  陈军 《热加工工艺》2007,36(22):18-20,23
研究了一种新型的亚稳定β钛合金在α β两相区固溶时效处理(850℃×1h AC 600℃x6h AC)、β区固溶时效(880℃×lh AC 600℃×6h AC)、α β和β双重处理(850℃×0.5 h→880℃×0.5h AC 600℃×6h AC)3种热处理状态下的显微组织与力学性能.结果表明,850℃固溶处理没有改变原始加工态组织形貌;880℃固溶的显微组织为再结晶晶粒,低温时效后析出少量的α相;β (α β)双重处理后的显微组织为再结晶的β晶粒内析出较多的α相.无论在α β区还是在β区固溶时效处理,该合金都具有很好的强度短线塑性匹配关系,且达到了很高的强度级别;再结晶对于提高合金的断裂韧性有利,但从保持合金塑性的角度,固溶温度不宜选择在β温度区.因此将固溶温度定在α β两相区的接近β相变点的850℃是相对合理的.  相似文献   

6.
以近β锻造的多元Ti2AlNb基合金Ti-22Al-25Nb-1Mo-1V-1Zr-0.2Si(at %)为实验对象,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和万能拉伸试验机等测试手段研究了不同热处理对近β锻造Ti2AlNb基合金组织和力学性能的影响。结果表明:经近β锻造空冷后的组织由初生α2相、针状O相和基体B2相构成。随着固溶温度的升高,合金室温、高温强度升高,塑性降低。而随着时效温度的升高,合金的强度和塑性变化规律与固溶处理的规律正好相反。分析认为,固溶处理主要影响合金中初生α2/O相体积分数,随着固溶温度的升高,初生α2/O相体积分数减少,使得针状O相的强化作用增强,同时造成α2相对B2晶界钉扎减弱,B2晶粒长大塑性降低。时效处理主要影响析出相形态,随着时效温度的降低,合金中析出板条厚度减小,使得细小板条强化作用增加,而有利于塑性的B2相体积分数减少,导致合金塑性降低。  相似文献   

7.
李东  周敬  常昕  关少轩 《金属学报》1990,26(6):57-62
研究了Ti_3Al-Nb合金在高温下的有序化,冷却过程高温β相转变及时效过程亚稳定β相分解的行为,结果指出,在1060℃固溶处理时,合金形成初生α_2和β高温有序相;在固溶处理后的冷却过程中,合金发生β→α_2+ω型转变;在700℃时效过程中,合金发生(β+ω型)亚稳→(α_2+β)稳定分解。  相似文献   

8.
研究了固溶时效热处理对多向锻造TiBw/Ti复合材料组织和力学性能的影响。实验表明:当固溶温度为950℃时,复合材料的基体为双态组织,TiBw沿初生α相分布;固溶温度为1050℃时,等轴α相转化为片层α相和α集束,β晶界出现,TiBw沿β晶界分布;固溶温度为1150℃时,复合材料的基体组织为魏氏组织,β晶界进一步扩大,α集束更加细长,TiBw沿β晶界或α集束分布。经热处理后,TiBw/Ti复合材料的室温抗拉强度和屈服强度随着固溶温度升高而增加,但室温塑性呈现相反趋势。  相似文献   

9.
研究了固溶温度及冷却速度对Ti3510钛合金锻件的显微组织及力学性能的影响。XRD结果表明,固溶后空冷的合金相组成主要为α相及β相,固溶后水冷的合金相主要为α'相及β相,且有少量的α'相析出。显微组织表明,合金微观组织形貌对冷却速度十分敏感,固溶后空冷的合金主要为细小的针状或点状析出物,固溶后水冷的合金主要为板条状次生相。室温拉伸结果表明,随着固溶温度的升高,空冷后的合金强度及塑性总体上缓慢提高,至800℃处理时强度达到最高,抗拉强度达到998 MPa,伸长率为10%。水冷处理后合金强度下降,但塑性提高。850℃固溶后水冷,合金的抗拉强度达到812 MPa,伸长率为25%。  相似文献   

10.
李东  周敬 《金属学报》1990,26(6):A443-A448
研究了Ti_3Al-Nb合金在高温下的有序化,冷却过程高温β相转变及时效过程亚稳定β相分解的行为,结果指出,在1060℃固溶处理时,合金形成初生α_2和β高温有序相;在固溶处理后的冷却过程中,合金发生β→α_2+ω型转变;在700℃时效过程中,合金发生(β+ω型)亚稳→(α_2+β)稳定分解。  相似文献   

11.
固溶温度对TB8钛合金组织及性能的影响   总被引:2,自引:0,他引:2  
研究了固溶温度对TB8钛合金显微组织及力学性能的影响.结果表明,随固溶温度的升高,合金β晶粒明显长大;合金固溶态强度略有降低,塑性逐渐升高;合金固溶+时效处理后,β晶界及晶粒内部均匀弥散析出大量次生α相颗粒,强度呈上升趋势,塑性明显降低.TB8钛合金在770 ~ 830℃温度范围内固溶后,具有较高的强度和优异的塑性,经520℃时效后,综合性能优异,抗拉强度> 1300 MPa,伸长率>15%,断面收缩率>55%.  相似文献   

12.
本论文研究了新型高强钛合金(Ti-6Al-6Mo-4V)的微观结构和力学性能。分在α/β和β区固溶处理后,在460℃~620℃5个不同温度下时效6h,研究合金的组织与性能之间的关系。结果表明,α/β区固溶时效处理后的性能与β单相区固溶时效处理后相比,α/β区固溶时效处理后合金获得更好的强度和塑性组合。在850℃(α/β区域)固溶处理以及460℃时效后,合金获得最高的强度为1572MPa,伸长率为2.63%;在620℃时效时,合金的伸长率达到最高为11.46%,但强度较低为1201MPa。经过825℃固溶处理,540℃时效后,该合金获得最好的强度(1328MPa)和伸长率(7.58%)匹配。同时,β区溶液处理后的β晶粒较大,时效后形成细小的二次α相 ,导致强度和塑性较差。  相似文献   

13.
对Ti-6Al-6V-2Sn钛合金棒材进行锻造、固溶及时效处理,利用光学显微镜、XRD、SEM及力学性能试验对该合金不同固溶、时效工艺下的显微组织和力学性能进行研究。结果表明:Ti-6Al-6V-2Sn钛合金锻棒的组织为初生等轴α+β转变组织,合金经固溶处理后的组织为初生α_p相、马氏体α′、α″相和亚稳β相,强度有所降低,断面收缩率有所上升,说明固溶处理有一定的软化作用,但随着固溶温度升高,强度增加,塑性下降;经固溶处理后的棒材在时效处理过程中,亚稳态组织析出细小弥散的次生αs相,使合金强度明显强化,塑性略有降低,且随着时效温度的升高,强化效果下降,塑性随之提高。经过综合比较,并考虑强塑性的最佳匹配,可以确定本实验中Ti-6Al-6V-2Sn合金固溶时效热处理的优化工艺为(880℃,1 h,WQ)+(580℃,4 h,AC)。  相似文献   

14.
采用高温显微镜、维氏显微硬度计、透射电子显微镜及差示扫描量热仪等手段研究了高硅镍铜合金NCu30-4-2-1热处理组织演变规律。结果表明,合金铸态组织由树枝状α-Ni基固溶体相以及枝晶间呈网状分布的α+β共晶相组成;固溶温度为850℃时,合金组织无明显变化;固溶温度为950℃保温2 h时,枝晶组织基本消失,合金中β强化相基本溶入固溶体基体中,形成单相过饱和固溶体基体组织;固溶温度为1050℃时,晶粒异常长大。在固溶处理950℃×2 h+时效处理600℃×8 h下,主要析出相为细小弥散分布的β'-Ni3Si相,与基体保持良好共格关系,合金硬度达到450 HV。  相似文献   

15.
本文以Ti6Al4V-DT (TC4-DT)为研究对象,分别对其进行不同方式的固溶、冷却和时效处理,利用金相显微镜、拉伸试验机研究其显微组织、强度和塑性的变化,结果表明:强度和塑性的主要影响因素为固溶温度和冷却方式。在α+β两相区和单相区固溶并在580℃时效8小时,可以分别得到双态组织和片层组织,相变点以下随着固溶温度的提高,初生α相含量明显减少,且强度和塑性在两相区固溶更优;相变点以上固溶时,冷却速率降低会使α相片层粗化,抗拉强度和屈服强度逐渐降低;在两相区固溶α相尺寸随着时效温度升高而增大,在低温时效时,由于α相的弥散强化作用使得合金强度较高。TC4-DT合金在α+β两相区860℃/1.5h固溶,550℃/8h时效处理,在空冷的状态下,可获得合金强度(1017MPa)、塑性(伸长率22%)匹配良好的综合性能。  相似文献   

16.
研究了新型高强钛合金(Ti-6Al-6Mo-4V)的微观结构和力学性能。分别在α/β和β区固溶处理后,在460~620℃5个不同温度下时效6h,研究合金的组织与性能之间的关系。结果表明,α/β区固溶时效处理后的性能与β单相区固溶时效处理后相比,α/β区固溶时效处理后合金获得更好的强度和塑性组合。在850℃(α/β区域)固溶处理以及460℃时效后,合金获得最高的强度为1572 MPa,伸长率为2.63%;在620℃时效时,合金的伸长率达到最高为11.46%,但强度较低为1201 MPa。经过825℃固溶处理,540℃时效后,该合金获得最好的强度(1328 MPa)和伸长率(7.58%)匹配。同时,β区溶液处理后的β晶粒较大,时效后形成细小的二次α相,导致强度和塑性较差。  相似文献   

17.
以Ti6Al4V-DT(TC4-DT)为研究对象,分别对其进行不同方式的固溶、冷却和时效处理,利用金相显微镜、拉伸试验机研究其显微组织、强度和塑性的变化。结果表明:强度和塑性的主要影响因素为固溶温度和冷却方式。在α+β两相区和单相区固溶并在580℃时效8 h,可以分别得到双态组织和片层组织,相变点以下随着固溶温度的提高,初生α相含量明显减少,且强度和塑性在两相区固溶更优;相变点以上固溶时,冷却速率降低会使α相片层粗化,抗拉强度和屈服强度逐渐降低;在两相区固溶α相尺寸随着时效温度升高而增大,在低温时效时,由于α相的弥散强化作用使得合金强度较高。TC4-DT合金在α+β两相区860℃/1.5 h固溶,550℃/8 h时效处理,在空冷的状态下,可获得合金强度(1017 MPa)、塑性(伸长率22%)匹配良好的综合性能。  相似文献   

18.
《热处理》2021,(4)
采用电子束增材制造技术制备了 TC4钛合金试棒,对试棒进行了 700~1 000℃的退火、900~960℃的固溶处理和550℃时效处理,检测了热处理后合金的显微组织和力学性能。结果表明:随着退火温度的升高,合金晶粒内α相的取向差增大,β相含量增加,针状α相数量减少,α相发生粗化;1 000℃退火的合金α相板条呈等轴状,组织明显粗大;随着固溶温度的升高,合金组织中针状次生α相数量增多,组织粗化;960℃固溶处理的合金组织为全片层状的次生α相;随着退火温度的升高,合金的抗拉强度和塑性均下降;随着固溶温度的升高,合金的抗拉强度增加而塑性降低,960℃固溶处理的合金抗拉强度最高,达1 167.2 MPa,断后伸长率为6%;经900℃×1 h固溶处理、水冷随后550℃×4 h时效处理的合金力学性能最好,抗拉强度为1 075.7 MPa,断后伸长率为10%。  相似文献   

19.
采用非自耗真空电弧炉制备了铸态Ti-10Mo(mass%)合金,分别在850、900和950℃下对该合金进行固溶处理.采用X-射线衍射仪(XRD)、光学显微镜(OM)、压缩实验及电化学测试研究了不同温度固溶处理对合金显微组织、力学性能及腐蚀性能的影响.结果 表明:固溶处理后的合金的组织主要以β相和α"相为主,随着固溶温度的升高,α"相衍射峰强度逐渐降低,β相衍射峰向小角度偏移.此外,固溶处理后合金在压缩过程中均出现"双屈服"现象,塑性应变超过70%仍未断裂,表现出良好的塑性.动电位极化曲线和阻抗图谱表明,铸态与850℃固溶样品在3.5%NaCl溶液中的腐蚀电流密度(icorr)较小,耐蚀性较好.  相似文献   

20.
研究了固溶温度、时效温度、时效时间对Ti-6Cr-5V-5Mo-4Al-1Nb(Ti-65541)合金显微组织与力学性能的影响。结果表明,在β相变点以上固溶并时效后,合金中析出细小的次生α相,初生α相完全消失;在较低温度固溶并时效后,次生α相和初生α相同时存在。时效温度对合金强度和塑性的影响最为显著,固溶温度次之,时效时间的影响最弱。随着时效温度的升高,合金的抗拉强度和屈服强度降低,塑性提高。随着固溶温度的提高,合金的强度提高,塑性降低。随着时效时间的延长,合金强度和塑性总体呈降低趋势。在740~760℃范围内固溶处理,在540~580℃范围内时效且时效时间在4~6 h内,可获得综合性能优异的Ti-65541合金。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号