首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
该文采用固相反应法制备了铋层状结构Ca_(1-x)(LiCe)_(x/2)Bi_2Ta_2O_9(CBT-LC100x)高居里温度(T_C)压电陶瓷,研究了(Li_(0.5)Ce_(0.5))~(2+)复合离子掺杂对CaBi_2Ta_2O_9(CBT)基陶瓷晶体结构、介电、压电等性质的影响。结果表明,在选定(Li_(0.5)Ce_(0.5))~(2+)掺杂浓度范围内,CBT-LC100x陶瓷呈正交晶体结构。随着x增加,T_C趋于降低,从941℃降低至924℃。Ce离子的施主掺杂效应有利于电阻率及压电活性的提高,当x=0.06(x为摩尔分数)时,具有最优综合性能,T_C约为924℃,压电常数d_(33)约为8.1 pC/N, 650℃时电阻率为1.7×10~6Ω·cm。  相似文献   

2.
钙钛矿结构BiFeO_3-BaTiO_3固溶体是一种可能的高温、无铅铁电压电陶瓷材料体系。长期以来,低直流电阻、高介电损耗制约了它的电学性能实验测量和工程应用。本文通过添加Bi(Zn_(1/2)Ti_(1/2))O_3钙钛矿氧化物第三组元、锰掺杂和工艺条件优化,采用改进的固相反应电子陶瓷工艺,制备了具有工程应用需求的低介电损耗的多种组分BiFeO_3-Bi(Zn_(1/2)Ti_(1/2))O_3-BaTiO_(3 )(BF-BZT-BT)三元固溶体陶瓷材料。X射线衍射测量表明它们形成了单一的三方钙钛矿相,耐压测量表明它们在120℃高温击穿场强大于8×10~(3 )V/mm。其中,摩尔分数0.8%Mn掺杂0.74BF-0.04BZT-0.22BT铁电陶瓷的压电性能为:d_(33)=78 pC/N,ε_(33)T/ε_0=254,tanδ=0.008,T_C=630℃,压电响应是目前商用钛酸铋系压电陶瓷K-15的4.2倍;摩尔分数0.7%Mn掺杂0.69BF-0.04BZT-0.27BT陶瓷的压电性能为:d_(33)=130 pC/N,ε_(33)T/ε_0=542,tanδ=0.025,T_C约510℃,压电响应是目前商用偏铌酸铅压电陶瓷K-81的1.5倍。  相似文献   

3.
通过传统的固相烧结法制备了Pb(Ni_(1/3)Nb_(2/3))_(0.5)(ZraTib)_(0.5)O_3+x%ZnO(PNN-PZT+x%ZnO,质量分数x=0.2,0.4,0.6,0.8)压电陶瓷,该文研究了不同ZnO含量对PNN-PZT压电陶瓷的微观形貌、相结构及压电性能的影响。通过X线(XRD)表明,过量的ZnO加入使压电陶瓷出现焦绿石相;通过扫描电镜(SEM)分析表明,当x>0.4时,ZnO的加入由于烧结温度的降低,晶界不明显。实验表明,烧结温度为1 190℃保温2h,ZnO的掺杂量x=0.4时,压电材料的综合性能最好:介电常数εr=5 596,介电损耗tanδ=2.12%,压电常数d33=534pC/N,机械耦合系数kp=0.53。  相似文献   

4.
在1 280℃下,采用传统固相反应法制备出Pb(Sn_(0.5)Nb_(0.5))O_3-Pb(Ni_1/_3Nb_2/_3)O_3-Pb[Zr_xTi(_(1-x))]O_3(PSN-PNN-PZT,质量分数x=0.42,0.43,0.44,0.45)压电陶瓷。研究了不同的x对PSN-PNN-PZT压电陶瓷的相结构、显微组织形貌及电学性能的影响。结果表明,当x=0.43时,样品为单一的钙钛矿结构,存在准同型相界,并且晶粒饱满,晶界清晰,颗粒大小均匀,综合电学性能达到最优,压电常数d_(33)=625pC/N,介电常数ε_r=3 005,介电损耗tanδ=1.75%,电容C_p=1 280nF。  相似文献   

5.
付豪  刘洪  朱建国 《压电与声光》2019,41(5):710-714
采用固相法制备了0.1Pb(Zn_(1/3)Nb_(2/3))O_3-0.1Pb(Ni_(1/3)Nb_(2/3))O_3-0.8Pb(Zr_(0.52)Ti_(0.48))O_3+x%Li_2CO_3(PZN-PNN-PZT,x为质量分数)低温压电陶瓷,研究了Li_2CO_3掺杂对PZN-PNN-PZT压电陶瓷晶体结构、微观形貌及电学性能的影响。实验结果表明,随着Li_2CO_3含量的增加,PZN-PNN-PZT陶瓷晶体结构从三方相向四方相转变,陶瓷晶粒尺寸先增大后减小。掺杂适量的Li_2CO_3能有效提高PZN-PNN-PZT陶瓷的电学性能。当x=0.3时,PZN-PNN-PZT陶瓷具有最好的综合性能:压电常数d_(33)=530 pC/N,机电耦合系数k_p=0.55,品质因数Q_m=60,居里温度T_C=176℃,相对介电常数ε_r=2 800,剩余极化强度P_r=32.80μC/cm~2,矫顽场E_c=0.96 kV/mm。  相似文献   

6.
采用传统氧化粉末固相反应法制备出了稀土氧化钇Y_2O_3掺杂(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1))O_3[简称BCZT-xY]无铅压电陶瓷。通过X射线衍射仪(XRD)及扫描电镜(SEM)研究了不同Y_2O_3掺杂量(x=0.2%~0.8%,质量分数)对BCZT的相结构、显微组织的影响。结果表明,适量掺杂BCZT陶瓷均可获得单一的钙钛矿结构陶瓷,当x为0.6%时获得样品的衍射强度较大;所制陶瓷的电学性能随着Y_2O_3掺杂量的变化显著变化,在烧结温度为1 480℃时,当Y_2O_3掺杂量x为0.2%时,陶瓷电学性能最优,在1 k Hz频率下室温测得各项参数为:压电常数d_(33)=208 pC/N,介电损耗tanδ=0.0182,相对介电常数ε_r=5 172.97。适量Y_2O_3掺杂能够改善BCZT压电陶瓷的电学性能。  相似文献   

7.
采用二步合成法制备了掺杂z%Sb_2O_3的Pb(Zn_(1/3)Nb_(2/3))_0.20(Zr_(0.50)Ti_(0.50))_(0.80)O_3-0.5%MnO_2(PZNTM)压电陶瓷(Sb_2O_3的质量分数为z=0、0.1、0.3、0.5、 0.7、0.9).探讨了不同剂量Sb_2O_3掺杂对陶瓷试样的相结构和机电性能的影响.结果表明,在1 150 ℃下烧结3 h,得到处在准同型相界附近的纯钙钛矿结构的陶瓷;随着Sb_2O_3掺杂量的增加,试样的压电常数d_(33)和机电耦合系数k_p先增大后减小,而介电损耗tan δ持续上升,机械品质因数Q_m则持续下降.当z=0.3时,压电陶瓷的性能得到优化,d_(33)和k_p均达到最大值,分别为302 pC/N和0.60,而tan δ较小、Q_m较大,分别为0.006和880.  相似文献   

8.
采用传统固相合成法制备了Zn/Li掺杂的0.83Pb(Zr_1/_2Ti_1/_2)O_3-0.11Pb(Zn_1/_3Nb_2/_3)O_3-0.06Pb(Ni_1/_3Nb_(2/3))O_3(PZT-PZN-PNN)压电陶瓷,研究了不同含量的Zn/Li添加量对陶瓷的相结构、显微组织和电性能的影响。结果表明,随着Zn/Li掺杂量的增加,相结构由三方相向四方相转变;介电常数ε_r、压电常数d_(33)和机电耦合系数k_p均先增大后减小,而介电损耗tanδ和机械品质因数Q_m呈先减小后增大的趋势;当添加质量分数w(Zn/Li)=1%时,该压电陶瓷的综合性能最佳,即d_(33)=513pC/N,k_p=0.635,ε_r=1 694,tanδ=0.023 5。该材料有望用于制造低温共烧的叠层压电器件。  相似文献   

9.
采用固相法,研究了不同Nd_2O_3掺杂量对(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1))O_3(BCZT)无铅压电陶瓷的物相组成、显微结构及介电性能和压电性能的影响。结果表明:Nd_2O_3掺杂的BCZT陶瓷的主晶相为单一的钙钛矿结构相,并没有明显的第二相。随着Nd_2O_3掺杂量的增大,BCZT陶瓷的压电常数(d_(33))、机电耦合系数(K_P)和介电损耗(tanδ)先增大然后减小,BCZT陶瓷的相对介电常数(ε_r)和体积密度(ρ)先减小然后增大。当Nd_2O_3的质量分数为0.2%时,在1 420℃烧结的BCZT无铅压电陶瓷综合性能较好:d_(33)为228 pC/N,K_P为38.9%,ε_r为2 846,tanδ为0.018,ρ为4.805 g/cm~3。  相似文献   

10.
采用传统的两步固相反应法制备了一种低温烧结的CuBBiO_4-(Ba_(0.8)Sr_(0.2))(Ni_(1/3)Nb_(2/3))-(Ba_(0.8)Sr_(0.2))(Zr_(0.5)Ti_(0.5))(BBC-BSNN-BSZT)压电陶瓷,并研究了CuBBiO_4(BBC)掺杂量对陶瓷微观形貌、相结构、介电、压电性能和烧结温度的影响。研究结果表明,制备的陶瓷样品为单一的钙钛矿相,未发现其他杂相;掺杂的BBC低熔点化合物在烧结中提供适量液相,促进烧结,样品可在925℃烧结致密。该压电陶瓷材料的居里温度由158℃提升到230℃;当掺杂w(BBC)=0.75%(质量分数)时,陶瓷达到最佳压电性能:压电常数d_(33)=613pC/N,机电耦合系数k_p=0.7,介电常数ε_r=3 926,介电损耗tanδ=0.005 2,品质因数Q_m=70。居里温度T_C=227℃。  相似文献   

11.
用普通陶瓷工艺制备了(1–x)Bi_(0.5)Na_(0.5)Ti O_3-x Ba(Al_(0.5)Sb_(0.5))O_3(x=0.03~0.05)压电陶瓷,研究了Ba(Al_(0.5)Sb_(0.5))O_3含量对Bi_(0.5)Na_(0.5)Ti O_3(BNT)压电陶瓷的介电、压电、铁电和场致应变效应的影响。研究表明,随着第二组元Ba(Al_(0.5)Sb_(0.5))O_3含量的增加,该陶瓷经历了从极性态的铁电相向非极性态的非铁电相的转变。在x=0.035组分处,多相共存导致样品具有最大的压电常数d_(33)=99 p C/N,最大的应变S_(max)=0.27%,机电耦合系数k_p=20.1%,k_t=30.4%,等效压电常数d~*_(33)=386 pm/V。  相似文献   

12.
采用传统陶瓷烧结工艺,制备了BiYbO3掺杂的xBiYbO3-0.95(K05Na0.5)NbO3-0.05LiSbO3(xBY-KNN-LS)(x=0~0.002,摩尔分数)无铅压电陶瓷.研究了BiYbO3掺杂对陶瓷相结构、显微组织和电性能的影响.结果表明,随着BiYbO3掺杂含量的增加,晶粒变细,居里点逐步向低温方向移动,压电性能先增加后降低,介电损耗tan δ先增加后减小.在0≤x≤0.001 5的范围内,存在斜方相与四方相共存的准同型相界,当x=0.1%时得到最佳电性能:压电常数d33=245 pC/N,机电耦合系数kp=44.75%,居里温度Tc =365℃,tan δ=4.5%.  相似文献   

13.
采用传统固相烧结法制备出0.94Bi_(0.5)(Na_(1-x)Li_x)_(0.5)TiO_3-0.06BaTiO_3(BNT6)压电陶瓷(摩尔分数x分别为0.06%,0.10%,0.15%,0.20%),研究了不同含量Li_2O掺杂对Bi_(0.5)Na_(0.5)TiO_3(BNT)基陶瓷材料物相结构、显微组织和压电、介电性能的影响。结果表明,添加不同含量的Li_2O,制备的BNBT6压电陶瓷组织分布均匀,致密度高,呈现三方-四方共存的准同型相界结构,且不同含量的Li_2O不影响陶瓷的相结构,但其烧结性能及电性能与Li含量有关。当x=0.15%时,BNBT6陶瓷样品的性能最佳,相对密度达到98%,在1kHz的测试频率下,BNBT6陶瓷样品的压电常数d_(33)=130pC/N,介电常数εr=971,介电损耗tanδ=2.0%,机械品质因数Q_m=367。  相似文献   

14.
采用传统固相法制备了CaCu_((3-x))Zn_xTi_4O_(12)(CCTO,x=0,0.04,0.08,0.12)陶瓷。用X线衍射仪和扫描电子显微镜研究了Zn~(2+)掺杂含量的变化对CaCu_((3-x))Zn_xTi_4O_(12)陶瓷的相结构、微观形貌的影响规律,并研究了CaCu_((3-x))Zn_xTi_4O_(12)陶瓷的低、高频介电性能。结果表明,少量Zn~(2+)的加入影响CaCu_((3-x))Zn_xTi_4O_(12)陶瓷的相结构和微观形貌。在低频范围内,CaCu_((3-x))Zn_xTi_4O_(12)陶瓷均具有巨介电常数(>104),且CaCu_(2.92)Zn_(0.08)Ti_4O_(12)陶瓷的介电常数温度依赖性小,介电损耗最小,这加速了CCTO陶瓷在陶瓷电容器方向应用的潜力。在微波频段(5.85~8.2GHz)范围内,CaCu_((3-x))Zn_xTi_4O_(12)陶瓷均具有介电弛豫现象,CaCu_((3-x))Zn_xTi_4O_(12)陶瓷的介电常数实部随掺杂量的增加而减小,介电常数虚部和损耗对应的频率变化趋势与实部一致。  相似文献   

15.
通过X线衍射(XRD)、扫描电子显微镜(SEM)和阻温特性测试仪,研究了不同NiO、Ni_2O_3掺杂量对BaNi~Ⅱ_xBi_(1-x)O_3和BaNi~Ⅱ_(x/3)Ni~Ⅲ_(2x/3)Bi_(1-x)O_3(摩尔比x=0.02~0.08)热敏陶瓷的物相、显微结构及电性能的影响。结果表明,BaNi~Ⅱ_xBi_(1-x)O_3与BaNi~Ⅱ_(x/3)Ni~Ⅲ_(2x/3)Bi_(1-x)O_3热敏陶瓷的室温电阻率ρ25及热敏常数B25~85值均随着NiO/Ni_2O_3掺杂量的增加呈现先减小后变大的趋势;试样BaNi~Ⅱ_(0.04)Bi_(0.96)O_3取得了良好的热敏性能,ρ25=2 743Ω·cm,B25~85=3 239K;BaNi~Ⅱ_(0.02)Ni~Ⅲ_(0.04)Bi_(0.94)O_3陶瓷的ρ25和B25~85的最优值分别为65Ω·cm和2 673K。  相似文献   

16.
采用固相法制备了Li掺杂K0.5Na0.5NbO3无铅压电陶瓷,即K0.5Na0.5NbO3+x/2%Li2CO3(KNN-xL)。研究了不同Li摩尔分数(x分别为0,0.25,0.50,0.75,1.00,1.50)样品的物相组成、显微结构及电性能。结果表明,室温下所有样品都具有正交相的钙钛矿结构。随着Li摩尔分数的增加,样品的压电常数d33、平面机电耦合系数kp、机械品质因数Qm及密度ρ都先升高后降低,介电损耗tanδ普遍比未掺杂的低,当x=0.5时综合性能达到最优,即d33=122pC/N,kp=41%,Qm=115,εr=548,tanδ=0.022,ρ=4.32g/cm3。另外正交到四方相变温度逐渐降低,居里温度逐渐升高。  相似文献   

17.
采用固相反应法制备了Li_2(Zn_(1–x)Co_x)_2Mo_3O_(12)陶瓷,研究了Co~(2+)取代对其相结构和微波介电性能的影响,并通过添加Ti O_2调节了该陶瓷的τ_f值。结果表明:不同Co~(2+)取代的Li_2(Zn_(1–x)Co_x)_2Mo_3O_(12)陶瓷均显示出单相钒铁铜矿结构。随着Co~(2+)取代量的增加,陶瓷的致密化温度显著降低,相对密度和Q·f值均呈现先增大后减小的趋势。当x=0.1时,陶瓷具有相对较好的微波介电性能:ε_r=10.85,Q·f=65 031 GHz,τ_f=–73×10~(–6)/℃。添加Ti O_2能够有效调节Li_2Zn_2Mo_3O_(12)陶瓷的τ_f值向正值方向移动,0.4Li_2(Zn_(0.9)Co_(0.1))_2Mo_3O_(12)-0.6Ti O_2陶瓷的介电性能较佳:ε_r=15.80,Q·f=22 991 GHz,τ_f=–4.5×10~(–6)/℃。  相似文献   

18.
采用传统固相反应制备出了0.80Na0.5Bi0.5TiO3-0.20K0.5Bi0.5TiO3(NKBT)基无铅压电陶瓷材料,研究了高化合价离子(Sb5+, Nb5+,W6+) B位掺杂对NKBT基无铅压电陶瓷结构与性能的影响.结果表明,掺杂等量Sb3+、Nb5+和W6+后,NKBT基陶瓷的主晶相仍然为钙钛矿相结构,其中掺杂Sb5+和Nb5+时,陶瓷中分别出现少量Sb6O13和Nb2O5相.掺杂离子的相对原子质量越大,陶瓷的压电常数d33越大.W6+为最优掺杂离子.不同W6+含量的NKBT陶瓷的主晶相均为钙钛矿相,当W6+摩尔分数为8%时,出现焦绿石相Bi14W2O27.W6+的固然极限为4%.随着W6+摩尔分数的增加,材料的介电常数εr、d33及居里温度TC减小,介电损耗tan δ增加.当W6+的摩尔分数为1%时,陶瓷的性能达到最佳,其d33、εr、tan δ、TC分别为123 pC/N,1 352、0.042 9,318 ℃.  相似文献   

19.
以碳酸钡、二氧化钛、二氧化锆等为主原料,以氧化钆为掺杂剂,采用传统固相法分别于1 250,1 280,1 300,1 330℃下制备了BaZr_(0.1)Ti_(0.9)O_3(BZT)+x Gd_2O_3(0≤x≤0.7%)陶瓷样品。XRD结果表明,Gd~(3+)掺杂后的陶瓷样品主晶相不变,均为钙钛矿结构。SEM结果表明,随着Gd3+掺杂量的增加,陶瓷的晶粒尺寸先减小后增大。陶瓷样品的体积密度和介电常数在x=0.2%,0.6%时出现较高值,介质损耗tanδ随Gd~(3+)掺杂量的增大呈减小趋势。Gd_2O_3掺杂改善了BZT陶瓷的介电温度特性,具有一定的移峰与压峰的作用。  相似文献   

20.
采用固相烧结法制备了(Nd_(0.5)Ta_(0.5))~(4+)复合离子调控的Bi_(0.5)(Na_(0.82)K_(0.18))_(0.5)Ti_(1-x)(Nd_(0.5)Ta_(0.5))_xO_3(BNKT-xNT)无铅陶瓷。研究了(Nd_(0.5)Ta_(0.5))~(4+)复合离子掺杂量对BNKT陶瓷的表面形貌、微观结构,以及铁电、介电、储能、阻抗等电学性能的影响。研究结果表明:(Nd_(0.5)Ta_(0.5))~(4+)复合离子进入了BNKT陶瓷的B位并形成了单一的钙钛矿结构;晶粒分布均匀、致密,晶界清晰;(Nd_(0.5)Ta_(0.5))~(4+)复合离子的引入显著降低了BNKT陶瓷的剩余极化强度、饱和极化强度以及矫顽场,电滞回线变得瘦小、细长,储能效率随之升高,并在x=0.08和60×10~3 V/cm电场下达到了70%;储能密度先减小、后增大、再减小,在x=0.04时达到最大值0.36 J/cm~3;电致应变在x=0.03时最大为0.183%;随着掺杂含量的增加,BNKT-xNT陶瓷从铁电相与弛豫铁电相共存转变为弛豫铁电相,其介电常数峰T_m逐渐降低且平坦化;交流阻抗谱表明BNKT-xNT陶瓷在低温下具有良好的绝缘性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号