首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
The double-alloy powder mixed method is very proper for developing new small-mass products by changing the composition of sintered Nd-Fe-B magnets, and there is little research on this aspect. The variation on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method was discussed, which is a method blending two-type main phase alloy powders with different components. The results showed that the intrinsic coercivity and density of sintered Nd-Fe-B magnets increased gradually with the increase in Dy content, and the double-alloy powder mixed method could obtain high intrinsic coercivity Nd-Fe-B magnets with good crystallographic alignment and microstructure. The bending strength of sintered Nd-Fe-B magnets declined, and the Rockwell hardness of sintered Nd-Fe-B magnets first declined, and then increased with the increase in Dy content. The microstructure showed that there existed the phenomenon that the Dy element diffused into main phase during sintering process, and the distribution of Dy content in main phase had some variation in homogeneity as a result of incomplete reaction between the double-alloy powder types.  相似文献   

2.
The grain boundary diffusion process(GBDP) of Tb can improve the coercivity of sintered Nd-Fe-B magnets.In this study,the effect of AI on the diffusion of Tb in the GBDP was investigated.The content of diffused Tb-Al was precisely controlled by adjusting the magnetron sputtering process.The Tb equivalent of Al was also studied.Results show that AI promotes the diffusion of Tb deeper into the magnet,reducing the thickness of the shell in the core-shell structure.This study is helpful for further ...  相似文献   

3.
To satisfy the application of different environments,grain boundary doping is commonly used in the preparation of sintered magnets to improve the coercivity and the corrosion resistance.In this paper,the alloys were prepared by mixing different ratios of the master alloy(Ce,Pr,Nd)-Fe-B and the sintering aid(Pr,Nd)-Al.The coercivity of sintered(Ce,Pr,Nd)-Fe-B magnet is substantially enhanced by doping 2 wt%of(Pr,Nd)-Al,while the maximum energy product decreases slightly.We systematically investigated the corrosion behavior and micro structure of the sintered magnets in order to determine the mechanism of the degradation.The sintered(Ce,Pr,Nd)-Fe-B magnets with 2 wt% of(Pr,Nd)-Al addition exhibit the decreasing corrosion rate compared with others,due to the distribution of intergranular phases.The electrode potential difference between the main phase and the RE-rich phase is reduced by the addition of Al,improving the potential and stability of RE-rich phase due to the higher electrode potential of Al than that of Nd,Pr or Ce.In addition,the element distribution of the magnets doped by(Pr,Nd)-Al indicates that the Al-rich shell formed at the marginal area of the Ce-rich phase improves its stability.Therefo re,intergranular adding te rnary(Pr,Nd)-Al alloy powders results in both high coe rcivity and good corrosion resistance synchronously.  相似文献   

4.
Al与Mo复合添加对NdFeB磁体矫顽力的影响   总被引:2,自引:0,他引:2  
周俊琪  张敏刚 《稀土》2001,22(6):41-43
本文采用晶间合金化工艺将合金元素Mo和Al直接引入烧结Nd-Fe-B磁体晶间区域,改变晶间区域的合金体系和显微组织,以达到提高磁体矫顽力的目的.实验结果表明Mo在低温时效过程中可抑制晶间富Nd相与主相之间的平衡转变,使晶界区域析出细小二次主相晶粒,使矫顽力提高.  相似文献   

5.
The effects of Nb on the thermal stability and impact toughness of ultra-high intrinsic coercivity of Nd-Fe-B magnets were investigated.The results showed that the addition of Nb could improve the thermal stability,and obviously increased the impact toughness of sintered Nd-Fe-B magnets.The optimum thermal stability of sintered Nd-Fe-B magnets was obtained when the content of Nb was 1.0 at.%.The maximum impact toughness of sintered Nd-Fe-B magnets was obtained when the content of Nb was 1.5 at.%,but the magnetic properties of sintered Nd-Fe-B magnets drastically deteriorated when the content of Nb increased from 1.0 at.% to 1.5 at.%.The microstructure showed that overfull Nb addition made many ultra-fine grains get together,which led to the density of sintered Nd-Fe-B magnets decline and drastically deteriorated the magnetic properties of sintered Nd-Fe-B magnets.  相似文献   

6.
Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magnets increased slightly with intergranular additions of MgO and ZnO. There was a remarkable increase in coercivity of Nd22Fe71B7 after addition. Besides, the effects on magnetic properties and an improved corrosion resistance were observed. Compared with the native magnets without addition, corrosion potential of the magnets with MgO and ZnO additives was more positive and the current density in the anodic branch of the polarization curve was reduced. Corrosion resistance resulting from autoclave testing (2×10^5 Pa of steam pressure, 120 ℃) showed that the corrosion rate of NdFeB magnets reduced with the increase of additive amount. Microstructure observation revealed that MgO and ZnO additives were incorporated into the intergranular phases in the magnets. With the introduction of MgO and ZnO, more intergranular phase with high oxygen content was formed while keeping the volume fraction of all the intergranular phases almost unchanged, which may contribute to improved corrosion resistance. Furthermore, addition of MgO and ZnO refined the grain size of Nd22Fe71B7.  相似文献   

7.
通过晶界扩散Dy70Al10Ga20合金研究了烧结Nd-Fe-B磁体的磁性能和热稳定性能.用NIM-500C高温永磁测量仪和MLA650扫描电镜测出了磁体在扩散前后的磁性能和微观组织的变化.结果表明,在Dy70Al10Ga20合金扩散热处理后,磁体矫顽力从原始的1 080.968 kA/m显著提升到1 671.600 kA/m,提升幅度约为55 %,而剩磁下降很少. Dy、Al、Ga元素在晶界处扩散,很好地隔绝了磁交换作用,提升矫顽力. SEM图显示在扩散Dy70Al10Ga20合金后,可以很明显地看到晶粒外延层有一层灰色的壳层包覆着主相晶粒,很好地起到了隔离晶粒的磁交换作用. XRD显示主相的峰普遍往右偏移,这归因于重稀土元素Dy进入晶粒外延层形成(Nd, Dy)2Fe14B核壳结构. Dy的原子半径比Nd小,导致峰往右移.   相似文献   

8.
Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse.  相似文献   

9.
In present study, sintered Nd-Fe-B permanent magnets with different compositions were fabricated by using both Spark Plasma Sintering (SPS) technique and conventional sintering technique. Microstructure and compositions of both magnets are observed by scanning electron microscope with energy dispersive X-ray detector. Magnetic properties, mechanical properties, and chemical stabilities of both Nd-Fe-B magnets are investigated. Compared with the conventional sintered magnets, SPS Nd-Fe-B magnets possess comparable magnetic properties, better corrosion resistance and mechanical properties. Further investigation shows that the good all-around properties of the SPS magnets result from their unique microstructure. In detail, the grain size of Nd2Fe14B main phase is fine and uniform, only a few Nd-rich phase forms along the grain boundaries of Nd2Fe14B, while most of them agglomerates into the triple junctions. As a result, SPS process is expected to be a promising method for the production of new Nd-Fe-B magnets with good all-around properties.  相似文献   

10.
To improve the coercivity and temperature stability of Nd-Fe-B sintered magnets for high-temperature applications, the eutectic Tb80Fe20 (wt%) alloy powders were added into the Nd-Fe-B sintered magnets by intergranular method to enhance the coercivity (Hcj) and thermal stability. The microstructure, magnetic properties and thermal stability of the Nd-Fe-B magnets with different Tb80Fe20 contents were studied. The experimental results demonstrate that the coercivity (Hcj) of the sintered Nd-Fe-B magnet is significantly enhanced from 14.12 to 27.78 kOe, and the remanence (Br) decreases not obviously by introducing 4 wt% Tb80Fe20 alloy. Meanwhile, the reversible temperature coefficients of coercivity (β) and remanence (α) of the Nd-Fe-B magnets are increased from ?0.5634%/℃ to ?0.4506%/℃ and ?0.1276%/℃ to ?0.1199%/℃ at 20–170 ℃, respectively. The Curie temperature (TC) of the Nd-Fe-B magnet is slightly enhanced with the increase of Tb80Fe20 content. Moreover, the irreversible flux magnetic loss (hirr) is obviously reduced as Tb80Fe20 addition increases. Further analysis of the microstructure reveals that a modified microstructure, i.e. clear and continuous RE-rich grain boundary layer, is acquired in the sintered magnets by introducing Tb80Fe20 alloy. The associated mechanisms on improved coercivity and thermal stability were comprehensively researched.  相似文献   

11.
The combination of conventional ion-plasma deposition and pulsed plasma technologies (PPT) has been applied for rare-earth Sm-Co and Nd-Fe-B based magnets, to provide them with enhanced corrosion resistance. The influence of pulsed plasma treatment on Sm-Co magnets with deposited titanium coatings has been investigated. It was revealed that the thickness of modified layer significantly depends on the thickness of initial titanium film and plasma treatment regimes. As a result of plasma treatment with energy density of 30 J/cmb for 5 pulses fine-grained layer with me thickness of 70 microns has been formed on the Sm-Co magnet with pure titanium film of 50 μm. According to SEM analyses considerable diffusion of titanium to the bulk of the magnet on the depth of 20 microns took place. Such reaction enhances strong bonding between the coating and the magnet. The effects of plasma processing on corrosion properties of Nd-Fe-B sintered magnets with ferroboron Fe80B20 (wt.%) coatings have been studied. The tests were carried out in naturally aerated sodium sulphate solutions by polarization method. It was shown that polishing of the initial surface before plasma treatment and ferroboron deposition have a strong influence on the corrosion behavior of Nd-Fe-B magnets.  相似文献   

12.
Nd-Fe-B/α-Fe nanocomposite magnets with high magnetic properties were successfully fabricated through a sonochemical process with carbonyl iron as Fe precursor and subsequently SPS. Experimental results show that α-Fe can increase the remanence of Nd-Fe-B/α-Fe nanocomposite magnets while decrease the coercivity. The demagnetizing curve indicates that the hard and the soft phases did not coupled very well, even though the remanence was improved. The magnetic properties of Br 8.61 kGs, Hcj 8.59 kOe and (BH)max 12.05 MGOe were obtained for Nd-Fe-B/α-Fe nanocomposite magnets with the nominal Fe content of 5 wt.%. It is noted, the exchange coupling was obviously enhanced by a MA process before SPS, and the magnets properties were increased to Br 9.42 kGs and (BH)max 14.27 MGOe for Nd-Fe-B/α-Fe nanocomposite magnets with the same Fe content.  相似文献   

13.
研究了晶界扩散Dy60Co35Ga5合金对烧结钕铁硼磁体磁性能及其热稳定性的影响.随着扩散温度的升高,磁体的矫顽力(Hcj)呈现出先增加后减少的趋势,并在890 ℃扩散3 h,480 ℃回火5 h的工艺条件下,矫顽力达到较优,从1 209 kA/m提高到1 624 kA/m,磁体的剩磁只有轻微的下降,从1.38 T降低到1.32 T.高温下测试磁体的磁性能,原始磁体和890 ℃晶界扩散Dy60Co35Ga5合金磁体的矫顽力都呈下降趋势,但晶界扩散Dy60Co35Ga5合金磁体的矫顽力在高温下要明显优于原始磁体.原始磁体及890 ℃晶界扩散Dy60Co35Ga5合金磁体在不同温度下保温2 h的不可逆磁通损失分别为63 %和45 %.且DSC结果显示,890 ℃晶界扩散Dy60Co35Ga5合金磁体的居里温度(Tc)要明显高于原始磁体的居里温度,这表明晶界扩散磁体的热稳定性得到了很大的改善. XRD图谱显示,890 ℃晶界扩散磁体RE2Fe14B相的衍射峰较原始磁体向右偏移,说明Dy原子及Co原子少部分已进入主相晶粒.   相似文献   

14.
In view of the uneven distribution of the core-shell structure of sintered Nd-Fe-B magnets after grain boundary diffusion,this study proposes to use high-melting-point and reactive element titanium(Ti) as an additive to increase the diffusion channels and to enhance the diffusion of heavy rare earth elements along the grain boundary phase.By adding Ti element,the diffusion depth and hence the intrinsic coercivity of magnets are increased significantly.The addition of Ti increases the coercivity ...  相似文献   

15.
Ce-Fe-B sintered magnets with enhanced coercivity were prepared by the powder metallurgy method. The mechanism of the coercivity enhancement in Ce-Fe-B sintered magnets with the low-melting point intergranular additive was discussed in details. It was speculated that the low coercivity of Ce-Fe-B sintered magnet was related to the irregular sharps and relatively low magneto-anisotropy field of the matrix phase. After introducing a 20 wt.% Nd-based intergranular additive, the coercivity markedly increased from 108 Oe to 2560 Oe due to the formation of thin and continuous grain boundary layers and the surface modification of the matrix phase grains. Additionally, the formation of the high anisotropy field(Nd,Ce)_2Fe_(14)B shell was beneficial to the increase of the coercivity as well. This work suggested that adding low-melting point intergranular additives was effective to fabricate the practical Ce-Fe-B sintered magnets.  相似文献   

16.
用磁控溅射法在烧结Nd-Fe-B磁体表面沉积Tb金属薄膜并进行晶界扩散处理,对比经不同热扩散温度及时间处理后的磁体组织和磁性能变化。结果表明,925℃×10 h+500℃×2 h为最佳晶界扩散工艺,可将磁体矫顽力提高到1630.9 kA·m-1,较原始磁体提升50%,同时剩磁和磁能积无明显下降,磁体仍具有较高的退磁曲线方形度。晶界扩散处理后磁体取向度有所提高,主相晶粒表面形成了明显的富Tb壳层结构,其厚度随离开磁体表面距离的增加逐渐变薄,随热扩散温度升高和时间延长逐渐增厚。长时间热扩散处理使磁体内形成沿晶界分布的连续薄层富Nd相,将主相晶粒彼此分隔,有效降低磁性相颗粒间交换耦合作用。能谱(EDS)分析表明,适当的热扩散工艺可使Tb元素扩散至磁体芯部,渗透厚度4 mm的磁体。  相似文献   

17.
The effects of Ho substitution for Nd on the microstructure, corrosion resistance and thermal stability of the Nd-Fe-B magnets were investigated. The(Nd,Ho)-O phase was formed with increasing Ho substitution. The results of potentiodynamic polarization and highly accelerated stress test show improved corrosion resistance with increasing Ho substitution. The optimum mass loss 0.29 mg/cm~2 is achieved.Moreover, the average temperature coefficients for remanence and coercivity in the range of 25-150℃are both closer to zero, indicating improved thermal stability. The mechanisms for the improved corrosion resistance and thermal stability are discussed in relation to the microstructure featuring the(Nd,Ho)-O phase.  相似文献   

18.
As an organic binder for bonded Nd-Fe-B magnets, epoxy resin(EP) has poor heat resistance but good moisture resistance, while sodium silicate(SS) has poor moisture absorption but better heat resistance and corrosion resistance. In order to improve high temperature stability and decrease moisture absorption of bonded Nd-Fe-B magnets, EP/SS composites were applied as the binder to prepare bonded Nd-Fe-B magnets. The magnetic properties, moisture absorption, corrosion resistance, compressive strength and microstructure of composite bonded magnets were investigated. The results show that EP/SS bonded magnets can obtain excellent magnetic properties at room temperature, and even useable magnetic properties a thigh temperature environments at 200°C. EP/SS composite binder effectively improves heat resistance and corrosion resistance of bonded Nd-Fe-B magnets, and reduces the hygroscopic properties. The molecule of sodium silicateis rigid and keeps it original shape at high temperature environments. In addition, SS in composite binder improves the mobility of the magnetic powders during the pre-pressing process, which makes the magnetic powders attain a more regular structure. These two factors will increase the mechanical properties. Moreover, sodium silicate in the composite binder can also cover the surfaces protecting the magnetic powders from oxidation and corrosion. EP in composite binder can cover SS surface to reduce the water absorption of SS as epoxy is a hydrophobic material. The EDX analysis shows that the composite binder has accumulated in the gaps of the magnet powders, which not only improves heat resistance and corrosion resistance, but also increases the mechanical properties. Therefore, EP/SS composite binder endows bonded Nd-Fe-B magnets excellent comprehensive properties.  相似文献   

19.
通过晶界扩散技术提升烧结钕铁硼(NdFeB)磁体矫顽力的方法已获得广泛应用,为了研究重稀土磁粉对磁体综合磁性能的影响,本文采用喷涂扩散的方法将重稀土Tb含量为6.0%(质量分数)的磁粉作为复合扩散源的一部分进行晶界扩散并制备了高性能烧结NdFeB磁体。结果表明,当主扩散源占比为60%(质量分数)时,Nd40Tb60对应扩散磁体的矫顽力最高达到21.52 kOe,矫顽力增幅明显。经过微观组织结构和XRD表征分析,重稀土元素Tb沿晶界相扩散进入磁体内部的同时发生了晶格取代反应,可在晶粒表层生成磁晶各向异性场更强的(Nd,Dy/Tb)2Fe14B硬磁相,显著增强了磁体矫顽力。当主扩散源占比为20%、40%和80%(质量分数)时,Nd80Tb20,Nd60Tb40和Nd20Tb80对应扩散磁体的矫顽力增幅较小,其中Nd80Tb20扩散...  相似文献   

20.
为提高热压结合热变形工艺制备的各向异性Nd-Fe-B磁体的力学性能,向磁体中掺杂高熔点、弱磁性金属元素Ni,研究Ni含量对磁体的磁性能、力学性能以及微观结构的影响。掺杂Ni的质量分数在0~5%之间时,Nd-Fe-B复合磁体的抗弯强度先增大后减小,2%Ni含量的Nd-Fe-B复合磁体具有最高平均抗弯强度212 MPa,其最大磁能积保持在40 MGOe以上。从磁体断口形貌上看,Ni会在孔洞附近富集,强化增韧晶界相,从而提高晶界相的裂纹扩展阻力,使抗弯强度提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号