首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To improve the coercivity and temperature stability of Nd-Fe-B sintered magnets for high-temperature applications, the eutectic Tb80Fe20 (wt%) alloy powders were added into the Nd-Fe-B sintered magnets by intergranular method to enhance the coercivity (Hcj) and thermal stability. The microstructure, magnetic properties and thermal stability of the Nd-Fe-B magnets with different Tb80Fe20 contents were studied. The experimental results demonstrate that the coercivity (Hcj) of the sintered Nd-Fe-B magnet is significantly enhanced from 14.12 to 27.78 kOe, and the remanence (Br) decreases not obviously by introducing 4 wt% Tb80Fe20 alloy. Meanwhile, the reversible temperature coefficients of coercivity (β) and remanence (α) of the Nd-Fe-B magnets are increased from ?0.5634%/℃ to ?0.4506%/℃ and ?0.1276%/℃ to ?0.1199%/℃ at 20–170 ℃, respectively. The Curie temperature (TC) of the Nd-Fe-B magnet is slightly enhanced with the increase of Tb80Fe20 content. Moreover, the irreversible flux magnetic loss (hirr) is obviously reduced as Tb80Fe20 addition increases. Further analysis of the microstructure reveals that a modified microstructure, i.e. clear and continuous RE-rich grain boundary layer, is acquired in the sintered magnets by introducing Tb80Fe20 alloy. The associated mechanisms on improved coercivity and thermal stability were comprehensively researched.  相似文献   

2.
Time-stability of sintered Nd-Fe-B magnet with lower content of oxygen at different temperatures and humidity conditions for 400 d was investigated.Results showed that the magnetic flux loss was-0.68% for the non-electroplating samples and-0.43% for the electroplating samples at room temperature and average humidity was 25% during 400 d,respectively.The magnetic flux loss of the plated samples was lower than non-plated samples under the conditions of room temperature and with the average humidity of 54%,but the magnetic flux loss of the plated samples was larger than that of the non-plated sample at 80 oC.The magnetic flux loss of electroplated and non-electroplated sintered Nd-Fe-B magnets was less than 1% for 400 d,which showed that the N40SH grade magnets have good time stability.  相似文献   

3.
Time-stability of sintered Nd-Fe-B magnet with lower content of oxygen at different temperatures and humidity conditions for 400 d was investigated. Results showed that the magnetic flux loss was ?0.68% for the non-electroplating samples and ?0.43% for the electroplating samples at room temperature and average humidity was 25% during 400 d, respectively. The magnetic flux loss of the plated samples was lower than non-plated samples under the conditions of room temperature and with the average humidity of 54%, but the magnetic flux loss of the plated samples was larger than that of the non-plated sample at 80 °C. The magnetic flux loss of electroplated and non-electroplated sintered Nd-Fe-B magnets was less than 1% for 400 d, which showed that the N40SH grade magnets have good time stability.  相似文献   

4.
The double-alloy powder mixed method is very proper for developing new small-mass products by changing the composition of sintered Nd-Fe-B magnets, and there is little research on this aspect. The variation on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method was discussed, which is a method blending two-type main phase alloy powders with different components. The results showed that the intrinsic coercivity and density of sintered Nd-Fe-B magnets increased gradually with the increase in Dy content, and the double-alloy powder mixed method could obtain high intrinsic coercivity Nd-Fe-B magnets with good crystallographic alignment and microstructure. The bending strength of sintered Nd-Fe-B magnets declined, and the Rockwell hardness of sintered Nd-Fe-B magnets first declined, and then increased with the increase in Dy content. The microstructure showed that there existed the phenomenon that the Dy element diffused into main phase during sintering process, and the distribution of Dy content in main phase had some variation in homogeneity as a result of incomplete reaction between the double-alloy powder types.  相似文献   

5.
The mechanical properties of die-upset Nd-Fe-B magnets produced at different die-upset processes were investigated. The results showed that the optimum comprehensive mechanical properties of die-upset Nd-Fe-B magnets were obtained at the deformation temperature of 680 oC. The anisotropy of Vickers hardness was more obvious at the die-upset level of 55%, and the Vickers hardness measured parallel to the c-axis was significantly lower than that perpendicular to the c-axis. The fracture toughness measured parallel to the c-axis first increased, and then decreased with increase in die-upset level. The maximum fracture toughness of Nd-Fe-B magnets was obtained at the die-upset level of 60%. The microstructure showed that the width of defect layers and the average size of large grains increased, and the layered structure of die-upset Nd-Fe-B magnets was obviously different with increase in the die-upset level.  相似文献   

6.
结合国内烧结Nd-Fe-B磁体工业生产过程,研究了压制成型时生坯密度变化对烧结Nd—Fe—B磁体致密化程度、显微组织、取向度与磁性能的影响。试验结果表明,生坯密度的提高可促进烧结致密化过程,抑制烧结过程晶粒的不均匀长大,提高取向度,改善磁性能。  相似文献   

7.
通过优化合金成分设计和改进合金铸锭按需分配技术、磁场取向成型技术以及烧结技术,应用全部国产设备与国内通用的工业生产烧结Nd-Fe-B永磁的原材料,避免使用镓等稀有贵重金属元素,实现了N45H烧结Nd-Fe-B磁体的工业化生产,其典型磁性能为Br=1.386T(13.86kGs),BHc=1059kA/m(13.32kOe),JHc=1418kA/m(17.83kOe),Hk=1357kA/m(17.06kOe),(BH)max=364kJ/m^3(45.8MGOe)。,SEM观察和XRD分析结果表明,制造的N45H烧结Nd-Fe-B磁体具有良好的取向度和晶粒细小而均匀的显微组织。  相似文献   

8.
Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse.  相似文献   

9.
Nd-Fe-B permanent magnets with a small amount of Al nano-particles doping were prepared by conventional sintered method. Effect of Al content on magnetic property, corrosion resistance and oxidation properties of the magnets were studied. Investigation showed that the coercivity rose gradually, while the remanence decreased simultaneously with increase of Al doping amount. Further investigation revealed that most Al element diffused into the main phase and some Al element diffused into the Nd-rich phase. The autoclave test results showed that the corrosion rate of the magnets decreased with Al content increasing. After oxidation, the maximum energy product losses of the magnets with 0.0 wt.% and 0.2 wt.% Al nano-particles doping were 6.13% and 3.99%, respectively. Therefore, Al nano-particles doping was a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnet.  相似文献   

10.
In the present work, anisotropic Nd_2 Fe_(14) B/Sm_2 Co_(17) hybrid-bonded magnets were prepared with different Nd-Fe-B contents. It is found that the particle distributions and ratios between the two magnetic phases have important roles in the magnetic properties, microstructures and thermal stability of the magnets. With increase of Nd-Fe-B content, the saturation magnetization of the anisotropic hybrid magnet increases significantly, however, coercivity decreases, and the demagnetization curves show magnetically single-phase behavior. The anisotropic Nd_2 Fe_(14) B/Sm_2 Co_(17) hybrid-bonded magnets exhibit a maximum energy product and remanence of 14.15 MGOe and 99.53 A·m~2/kg, respectively, when the NdFe-B content is 70 wt% at room temperature. Furthermore, the hybrid magnets also have better thermal stability at elevated temperatures due to the interaction between the two magnetic particles.  相似文献   

11.
烧结Nd-Fe-B永磁材料由于具有低成本、高磁性能而广受人们关注。近20年来,为了提高磁体的磁性能、温度稳定性能和抗腐蚀性能,国内外开展了大量的研究工作。据此,简要综述了近年来高性能烧结Nd-Fe-B磁体关键制造技术的开发与应用状况。  相似文献   

12.
The grain boundary diffusion process(GBDP) of Tb can improve the coercivity of sintered Nd-Fe-B magnets.In this study,the effect of AI on the diffusion of Tb in the GBDP was investigated.The content of diffused Tb-Al was precisely controlled by adjusting the magnetron sputtering process.The Tb equivalent of Al was also studied.Results show that AI promotes the diffusion of Tb deeper into the magnet,reducing the thickness of the shell in the core-shell structure.This study is helpful for further ...  相似文献   

13.
钕铁硼永磁材料在民用、航空航天等众多领域得到广泛的应用。高档次烧结钕铁硼磁体具有良好的市场前景。商业磁体多是由大块烧结毛坯切割而成,磁性能一致性是市场的基本要求之一,润滑剂等化学试剂和磁粉混合不均匀是影响一致性的一个重要因素。钕铁硼磁粉化学性质活泼、容易氧化,制粉的全过程都在氮气气氛下进行,没有合适的设备,想均匀加入化学试剂困难很大。研究人员因设备条件不足无法开展进一步探索。针对这个问题,项目组自行开发了专利产品"自动雾化加剂设备"。通过改变化学试剂加入方式,改善了磁粉和化学试剂混合均匀性,提高了磁体取向度,生产过程中也更好地保护了磁粉,得到内部一致性更好、磁性能更高的烧结钕铁硼磁体:剩磁(Br)=1.426 T,内禀矫顽力(Hcj)=1373.1 kA·m-1,最大磁能积((BH)max)=406.99 kJ·m-3。毛坯内部磁性能一致性的提高对后期加工成小片的商业磁体很有意义。开发的"自动雾化加剂设备"已经在烧结钕铁硼行业中得到广泛应用。  相似文献   

14.
注射成形粘结钕铁硼/铁氧体复合磁体的研究   总被引:2,自引:0,他引:2  
对注射成形粘结Nd-Fe-B/铁氧体复合磁体进行了深入的研究。实验结果表明:随着铁氧体磁粉的加入,复合磁体的磁性能虽略有降低,但其力学性能及热稳定性均有大幅度改善,特别是在铁氧体含量为87%(质量分数时),复合磁体内禀矫顽力温度系数为零,不同磁粉间静磁场的存在,使得复合磁体在铁氧体含量低于70%(质量分数)时,其磁性能大于平均值,而大于70%(质量分数)时则小于平均值。  相似文献   

15.
Nd-Fe-B/α-Fe nanocomposite magnets with high magnetic properties were successfully fabricated through a sonochemical process with carbonyl iron as Fe precursor and subsequently SPS. Experimental results show that α-Fe can increase the remanence of Nd-Fe-B/α-Fe nanocomposite magnets while decrease the coercivity. The demagnetizing curve indicates that the hard and the soft phases did not coupled very well, even though the remanence was improved. The magnetic properties of Br 8.61 kGs, Hcj 8.59 kOe and (BH)max 12.05 MGOe were obtained for Nd-Fe-B/α-Fe nanocomposite magnets with the nominal Fe content of 5 wt.%. It is noted, the exchange coupling was obviously enhanced by a MA process before SPS, and the magnets properties were increased to Br 9.42 kGs and (BH)max 14.27 MGOe for Nd-Fe-B/α-Fe nanocomposite magnets with the same Fe content.  相似文献   

16.
Grain boundary diffusion process(GBDP) was first proposed for sintered Nd-Fe-B magnets to achieve the high utilization efficiency of heavy rare earth elements.Recent success of fabricating high performance nanocomposite magnets by GBDP indicates that this method also exerts huge applicable potential on hot-deformed Nd-Fe-B magnets.In this review,the development and magnetic property enhancement mechanisms of different diffusion methods proposed on hot-deformed magnets were thoroughly elucidated....  相似文献   

17.
烧结Nd-Fe-B磁体属于脆性材料,力学性能是其综合性能的一个重要指标。磁体力学性能及加工性能的好坏,直接影响其服役可靠性和生产企业的制造成本。国防、航空等应用领域对磁体的抗冲击过载性能提出了很高的要求。分析了烧结Nd-Fe-B磁体的力学特性特征,重点介绍了改善力学性能研究所取得的成果,并展望了其未来的发展方向。  相似文献   

18.
The machinability of sintered Nd-Fe-B magnets with nominal compositions of (Nd1–xDyx)16Fe78B6 (x = 0, 0.05, 0.10, 0.15) and (Nd1–yPry)16Fe78B6 (y = 0, 0.33, 0.67, 1), has been investigated. The bending strength, fracture toughness and the Vickers Hardness were measured. It shows that the Dy substituted magnets shows higher Vickers Hardness than the Pr substituted magnets. The brittle index for investigated magnets improves monotonously with increasing Dy content, reduces with increasing Pr content, respectively, which seems to relate closely to the change of the lattice parameters.  相似文献   

19.
近年来,Nd-Fe-B磁体需求量的与日俱增间接地造成了稀土Ce 金属的大量积压,为提高稀土Ce 的利 用率,并降低Nd-Fe-B磁体的生产成本,可采取双主相合金法制备(Nd, Ce)-Fe-B磁体,为解决上述难题提供 了一种有效途径。通过对高Ce 含量速凝带的成分及速凝工艺的探索,成功制备出了具有较好枝晶且几乎 不含α-Fe 相的Ce-Fe-B 和(Nd, Ce)-Fe-B 速凝带。在制备的烧结磁体中,(Nd, Ce)-Fe-B 磁体的剩磁达到了 11.33 kGs,Ce-Fe-B磁体的剩磁达到了8.037 kGs,为后期制定制备高Ce 含量的高性能双主相磁体的热处理工 艺提供了数据参考。  相似文献   

20.
In present study, sintered Nd-Fe-B permanent magnets with different compositions were fabricated by using both Spark Plasma Sintering (SPS) technique and conventional sintering technique. Microstructure and compositions of both magnets are observed by scanning electron microscope with energy dispersive X-ray detector. Magnetic properties, mechanical properties, and chemical stabilities of both Nd-Fe-B magnets are investigated. Compared with the conventional sintered magnets, SPS Nd-Fe-B magnets possess comparable magnetic properties, better corrosion resistance and mechanical properties. Further investigation shows that the good all-around properties of the SPS magnets result from their unique microstructure. In detail, the grain size of Nd2Fe14B main phase is fine and uniform, only a few Nd-rich phase forms along the grain boundaries of Nd2Fe14B, while most of them agglomerates into the triple junctions. As a result, SPS process is expected to be a promising method for the production of new Nd-Fe-B magnets with good all-around properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号