首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This paper addresses the finite‐horizon H filtering problem for a kind of discrete state‐saturated time‐varying complex networks subjected to the weighted try‐once‐discard (WTOD) protocol. Under the WTOD protocol, only the measurement signal from one sensor node is allowed to be transmitted to the filter at each time point, where such a node is selected based on a certain quadratic selection principle. The main purpose of this paper is to design an H filter that guarantees the disturbance attenuation level on a given finite time‐horizon for the underlying complex network subject to both state saturations and WTOD protocols. By using the convex hull approach, sufficient conditions are first obtained to ensure the existence for the desired filter to achieve the H performance specification by means of a few recursive matrix inequalities. Then, based on the obtained results, the filter parameters are designed, which cope effectively with both state saturations and communication protocols. Finally, a numerical simulation is employed to demonstrate the validity of the developed filter algorithm.  相似文献   

2.
This article addresses the distributed H consensus problem of multi-agent systems with general linear node dynamics using relative output measurements. The notion of H consensus performance region is first introduced and then analysed as a basis for the protocol design. A new kind of distributed observer-type H protocols is further proposed. Theoretical analysis indicates that the distributed H consensus problem can be solved if and only if the coupling strength of the protocol belongs to the H performance region of the closed-loop network. Finally, some numerical simulations are provided to illustrate the effectiveness of the theoretical results.  相似文献   

3.
This article is devoted to the consensus control for switching networks of multiple agents with linear coupling dynamics and subject to external disturbances, which is transformed into an H control problem by defining an appropriate controlled output. On this basis, a distributed dynamic output feedback protocol is proposed with an undetermined system matrix, and a condition in terms of linear matrix inequalities (LMIs) is derived to ensure consensus of the multi-agent system with a prescribed H level. Furthermore, system matrix of the protocol is designed by solving two LMIs. A numerical example is included to illustrate the effectiveness of the proposed consensus protocol.  相似文献   

4.
This paper is concerned with the local design of the distributed H‐consensus filtering problem for a class of discrete time‐varying systems subject to both multiplicative noises and deception attacks over sensor networks. The target plant and the measuring sensors are disturbed by multiplicative noises with known statistics. The malicious signal involved in deception attacks is constrained by a specific sector‐like bounded condition, which reflects certain tolerable bound on the difference between the attack signal and the true signal. Attention is paid to the design of filter gains for guaranteeing a desirable filtering performance that simultaneously characterizes the filtering accuracy and the consensus requirement. To handle the proposed filtering problem, the supply rate function is firstly chosen for each node and then the dissipation matrix is constructed as a column substochastic matrix based on the stochastic vector dissipation theory. Subsequently, sufficient conditions by means of recursive linear matrix inequalities are presented for each node such that the filtering error and the consensus error satisfy the desirable H‐consensus performance index over a finite horizon. Finally, an illustrative simulation is presented to demonstrate the effectiveness of the proposed filter strategy.  相似文献   

5.
Linear, state‐delayed, continuous‐time systems are considered with both stochastic and norm‐bounded deterministic uncertainties in the state–space model. The problem of robust dynamic H output‐feedback control is solved, for the stationary case, via the input–output approach where the system is replaced by a nonretarded system with additional deterministic norm‐bounded uncertainties. A delay‐dependent result is obtained which involves the solution of a simple linear matrix inequality. In this problem, a cost function is defined which is the expected value of the standard H performance cost with respect to the stochastic parameters. A practical example taken from the field of guidance control is given that demonstrates the applicability of the theory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper aims to investigate the problem of H output tracking control for a class of switched linear parameter‐varying (LPV) systems. A sufficient condition ensuring the H output tracking performance for a switched LPV system is firstly presented in the format of linear matrix inequalities. Then, a set of parameter and mode‐dependent switching signals are designed, and a family of switched LPV controllers are developed via multiple parameter‐dependent Lyapunov functions to enhance control design flexibility. Even though the H output tracking control problem for each subsystem might be unsolvable, the problem for switched LPV systems is still solved by the designed controllers and the designed switching law. Finally, the effectiveness of the proposed control design scheme is illustrated by its application to an H speed adjustment problem of an aero‐engine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The dissipativity of discrete‐time switched memristive neural networks with actuator saturation is considered in this paper. By constructing a quasi‐time‐dependent Lyapunov function, sufficient conditions are obtained to guarantee the exponential stability and exponential dissipativity for the closed‐loop system with mode‐dependent average dwell time switching. Furthermore, the exponential H performance of discrete‐time switched memristive neural networks is also analyzed, while the quasi‐time‐dependent controller and observer gains of the desired exponential dissipative and H performance can be calculated from linear matrix inequalities. Finally, the effectiveness of theoretical results is illustrated through the numerical examples.  相似文献   

8.
This paper addresses the problem of designing an Hfuzzy state‐ feedback (SF) plus state‐derivative‐feedback (SDF) control system for photovoltaic (PV) systems based on a linear matrix inequality (LMI) approach. The TS fuzzy controller is designed on the basis of the Takagi‐Sugeno (TS) fuzzy model. The sufficient condition is found such that the system with the fuzzy controller is asymptotically stable and an Hperformance is satisfied. First, a dc/dc buck converter is considered to regulate the power output by controlling state and state‐derivative variables of PV systems. The dynamic model of PV systems is approximated by the TS fuzzy model in the form of nonlinear systems. Then, based on a well‐known Lyapunov functional approach, the synthetic is formulated of an Hfuzzy SF plus SDF control law, which guarantees the L2‐gain from an exogenous input to the regulated output to be less than or equal to some prescribed value. Finally, to show effectiveness, the simulation of the PV systems with the proposed control is assessed by the computer programme. The proposed control method shows good performance for power output and high stability for the PV system.  相似文献   

9.
This paper studies H2 and H almost output synchronization problems for heterogeneous continuous‐time multiagent systems with passive agents and strongly connected communication graph. For non‐introspective passive agents, a linear static protocol can be designed to achieve almost output synchronization with arbitrarily small H2 norm. Moreover, we show that the H almost output synchronization problem via static protocol is not solvable for this class of systems.  相似文献   

10.
This paper considers consensus problem for high‐order multi‐agent systems with dynamically changing topologies and nonuniform time‐varying delays. By means of the tree‐type transformation approach, the model transformation is conducted and the consensus problem is converted into an L2 ? L control problem of equivalent reduced‐order systems. Furthermore, a Lyapunov‐Krasovkii function is constructed for stability analysis and sufficient conditions in terms of linear matrix inequalities are derived to ensure the consensus with the prescribed L2 ? L performance. A numerical simulation is provided to verify the correctness of the theoretical results.  相似文献   

11.
This paper is concerned with the problem of H output tracking control for networked control systems (NCSs) with network‐induced delay and packet disordering. Different from the results in existing literature, the controller design in this paper is both delay‐ and packet‐disordering‐dependent. Based on the different cases of consecutive predictions, the networked output tracking system is modeled into a switched system. Moreover, by the corresponding switching‐based Lyapunov functional approach, a linear matrix inequality (LMI)‐based procedure is proposed for designing state‐feedback controllers, which guarantees that the output of the closed‐loop NCSs tracks the output of a given reference model well in the H sense. In addition, the proposed method can be applied variously due to all kinds of prediction numbers of the consecutive disordering packet have been considered, and the designed controller is based on the prediction case in the last transmission interval, which brings about less conservatism. Finally numerical examples and simulations are used to illustrate the effectiveness and validity of the proposed switching‐based method and the delay‐ and packet‐disordering‐dependent H output tracking controller design.  相似文献   

12.
This paper focuses on the filter design problem for semi‐Markov jump linear systems. The system outputs are transmitted to the filter via networks, and it is assumed that the transmission is imperfect with data packet dropouts subject to the Bernoulli random binary distribution. A σ‐error mean square stability criterion is first derived for the underlying systems. On the basis of the criterion, the H performance analysis is conducted. By constructing a time‐varying Lyapunov function, a time‐varying H filter scheme is investigated. Because the presented approach can cover the mode‐dependent and mode‐independent time‐invariant H filter schemes as special cases, the conservatism of the derived results is less than those of the time‐invariant filter schemes. An active suspension system with activator uncertainties is lastly presented to illustrate the effectiveness and feasibility of the derived theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
In this article, the nonfragile H filtering problem is investigated for a class of discrete multirate time‐delayed systems over sensor networks. The probabilistic packet dropout occurs during the information transmissions among the sensor nodes in the sensor network characterized by the Gilbert‐Elliott model. In order to take the multirate sampling into account, the state updating period of the system and the sampling period of the sensors are allowed to be different. The variation of the filter gain is considered to reflect the physical errors with the filter implementation. The aim of this article is to design a set of nonfragile filters such that, in the presence of multirate sampling, time‐delays, and packet dropouts, the filtering error dynamics is exponentially mean‐square stable and also satisfies the H performance requirement. By using the Lyapunov‐Krasovskii functional approach, a sufficient condition is derived, which ensures the exponential mean‐square stability and the H performance requirement of the filtering error dynamics. Then, the filter gains are characterized in terms of the solution to a set of matrix inequalities. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme.  相似文献   

14.
We develop a novel frequency‐based H‐control method for a large class of infinite‐dimensional linear time‐invariant systems in transfer function form. A major benefit of our approach is that reduction or identification techniques are not needed, which avoids typical distortions. Our method allows to exploit both state‐space or transfer function models and input/output frequency response data when only such are available. We aim for the design of practically useful H‐controllers of any convenient structure and size. We use a nonsmooth trust‐region bundle method to compute arbitrarily structured locally optimal H‐controllers for a frequency‐sampled approximation of the underlying infinite‐dimensional H‐problem in such a way that (i) exponential stability in closed loop is guaranteed and that (ii) the optimal H‐value of the approximation differs from the true infinite‐dimensional value only by a prior user‐specified tolerance. We demonstrate the versatility and practicality of our method on a variety of infinite‐dimensional H‐synthesis problems, including distributed and boundary control of partial differential equations, control of dead‐time and delay systems, and using a rich testing set.  相似文献   

15.
This paper investigates the problem of distributed reliable H consensus control for high‐order networked agent systems with actuator faults and switching undirected topologies. The Lipschitz nonlinearities, several types of actuator faults, and exogenous disturbances are considered in subsystems. Suppose the communication network of the multi‐agent systems may switch among finite connected graphs. By utilizing the relative state information of neighbors, a new distributed adaptive reliable consensus protocol is presented for actuator failure compensations in individual nodes. Note that the Lyapunov function for error systems may not decrease as the communication network is time‐varying; as a result, the existing distributed adaptive control technique cannot be applied directly. To overcome this difficulty, the topology‐based average dwell time approach is introduced to deal with switching jumps. By applying topology‐based average dwell time approach and Lyapunov theory, the distributed controller design condition is given in terms of LMIs. It is shown that the proposed scheme can guarantee that the reliable H consensus problem is solvable in the presence actuator faults and external disturbance. Finally, two numerical examples are given the effectiveness of the proposed theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is concerned with the problem of H fuzzy static output feedback control for discrete‐time Takagi‐Sugeno (T‐S) fuzzy systems, and new design methods are presented. By defining a fuzzy Lyapunov function, a new sufficient condition guaranteeing the H performance of the T‐S fuzzy systems is derived, and the condition is expressed by a set of linear matrix inequalities. In comparison with the existing literature, the proposed approach may provide more relaxed condition while ensuring better H performance. The simulation results illustrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

17.
This paper addresses the bounded H synchronization problem for the time‐varying coupled networks with stochastic noises and randomly occurring nonlinearities over a finite horizon. The bounded H synchronization performance constraint is proposed to quantify the degree of the synchronization regarding the exogenous disturbances. The nonlinearities considered in this paper are assumed to satisfy the sector‐like conditions and characterized by a time‐varying Bernoulli distribution with measurable probability in real time. Based on the Kronecker product and the Hadamard product, a sufficient condition is established firstly to ensure the bounded H synchronization of the network by utilizing the probability‐dependent method. Then the obtained criterion is further converted into a computationally available one by transforming the time‐varying probability into a polytopic form, which is presented in terms of matrix inequalities and hence can be verified easily by applying the Matlab toolbox. Finally, simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the robust H control problem for continuous‐time piecewise time‐delay systems by using piecewise continuous Lyapunov function. The uncertainties of the systems under consideration are expressed in a linear fractional form. A strict linear matrix inequality approach is developed to obtain delay‐dependent asymptotic stability conditions and H performance. The H controller design problem is solved by exploiting the cone complementarity linearization (CCL) method. Finally an example is given to illustrate the application of the proposed approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

19.
This paper considers robust consensus problem for Lur'e networks with incrementally nonlinearity and unknown disturbance, under a given directed communication topology. Both incrementally sector bounded nonlinearities and incrementally passive nonlinearities are investigated. A distributed protocol is proposed to achieve global consensus. In the design of consensus protocol, H technique is used to attenuate the effect of disturbance. Moreover, the design conditions for robust H consensus are formulated into linear matrix inequalities. Finally, numerical simulations are used to demonstrate the effectiveness and superiority of the proposed method.  相似文献   

20.
This paper considers the problem of delay‐dependent adaptive reliable H controller design against actuator faults for linear time‐varying delay systems. Based on the online estimation of eventual faults, the parameters of adaptive reliable H controller are updating automatically to compensate the fault effects on the system. A new delay‐dependent reliable H controller is established using a linear matrix inequality technique and an adaptive method, which guarantees the stability and adaptive H performance of closed‐loop systems in normal and faulty cases. A numerical example and its simulation results illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号