首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
针对传统层次聚类算法在处理大规模数据时效率低下的问题,提出一种快速层次聚类算法。根据数据点密度值的大小依次确定初始聚类中心,使用最小生成树算法对初始聚类中心间的相似度距离进行存储,寻找最优合并路径,从而减少更新距离矩阵的计算量和空间复杂度,并优化减法聚类中的收敛函数。在UCI数据集上的实验结果表明,该算法比传统聚类算法执行速度更快、效率更高,且随着数据量的增多,在时间消耗方面的优势更明显。  相似文献   

2.
现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来,计算出剩余数据集样本的平均密度,孤立点不参与聚类过程中各类所含样本均值的计算;在大于平均密度的密度参数集合中选择聚类中心,根据最小距离原则将孤立点分配给离它最近的聚类中心,直至将数据集完整分类。实验结果表明,这种基于平均密度优化初始聚类中心的k-means算法比现有的基于密度的k-means算法有更快的收敛速度,更强的稳定性及更高的聚类精度,消除了聚类结果对孤立点的敏感性。  相似文献   

3.
基于层次划分的最佳聚类数确定方法   总被引:20,自引:0,他引:20  
确定数据集的聚类数目是聚类分析中一项基础性的难题.常用的trail-and-error方法通常依赖于特定的聚类算法,且在大型数据集上计算效率欠佳.提出一种基于层次思想的计算方法,不需要对数据集进行反复聚类,它首先扫描数据集获得CF(clusteringfeature,聚类特征)统计值,然后自底向上地生成不同层次的数据集划分,增量地构建一条关于不同层次划分的聚类质量曲线;曲线极值点所对应的划分用于估计最佳的聚类数目.另外,还提出一种新的聚类有效性指标用于衡量不同划分的聚类质量.该指标着重于簇的几何结构且独立于具体的聚类算法,能够识别噪声和复杂形状的簇.在实际数据和合成数据上的实验结果表明,新方法的性能优于新近提出的其他指标,同时大幅度提高了计算效率.  相似文献   

4.
王治和  王淑艳  杜辉 《计算机工程》2021,47(5):88-96,103
模糊C均值(FCM)聚类算法无法识别非凸数据,算法中基于欧式距离的相似性度量只考虑数据点之间的局部一致性特征而忽略了全局一致性特征。提出一种利用密度敏感距离度量创建相似度矩阵的FCM算法。通过近邻传播算法获取粗类数作为最佳聚类数的搜索范围上限,以解决FCM算法聚类数目需要人为预先设定和随机选定初始聚类中心造成聚类结果不稳定的问题。在此基础上,改进最大最小距离算法,得到具有代表性的样本点作为初始聚类中心,并结合轮廓系数自动确定最佳聚类数。基于UCI数据集和人工数据集的实验结果表明,相比经典FCM、K-means和CFSFDP算法,该算法不仅具有识别复杂非凸数据的能力,而且能够在保证聚类性能和稳定性的前提下加快收敛速度。  相似文献   

5.
针对聚类算法中特征数据对聚类中心贡献的差异性及算法对初始聚类中心的敏感性等问题,提出一种基于知识量加权的直觉模糊均值聚类方法。首先将原始数据集直觉模糊化并改进最新的直觉模糊知识测度计算知识量,据此实现数据集特征加权,再利用核空间密度与核距离初始化聚类中心,以提高高维特征数据集的计算精度与聚类效率,最后基于类间样本距离与最小知识量原理建立聚类优化模型,得到最优迭代算法。基于UCI人工数据集的实验结果表明,所提方法较大程度地提高了聚类的准确性与迭代效率,分类正确率及执行效率分别平均提高了10.63%和31.75%,且具有良好的普适性和稳定性。该方法首次将知识测度新理论引入模糊聚类并取得优良效果,为该理论在其他相关领域的潜在应用开创了新例。  相似文献   

6.
结合密度聚类和模糊聚类的特点,提出一种基于密度的模糊代表点聚类算法.首先利用密度对数据点成为候选聚类中心点的可能性进行处理,密度越高的点成为聚类中心点的可能性越大;然后利用模糊方法对聚类中心点进行确定;最后通过合并聚类中心点确定最终的聚类中心.所提出算法具有很好的自适应性,能够处理不同形状的聚类问题,无需提前规定聚类个数,能够自动确定真实存在的聚类中心点,可解释性好.通过结合不同聚类方法的优点,最终实现对数据的有效划分.此外,所提出的算法对于聚类数和初始化、处理不同形状的聚类问题以及应对异常值等方面具有较好的鲁棒性.通过在人工数据集和UCI真实数据集上进行实验,表明所提出算法具有较好的聚类性能和广泛的适用性.  相似文献   

7.
杂波环境下,利用概率假设密度滤波器进行扩展目标跟踪存在量测集划分难且计算效率低的问题,提出基于层次划分密度的聚类优化(CODHD)算法对扩展目标进行量测集划分的方法。先利用自适应椭球门限的方法对量测集进行预处理,通过簇合并方式生成量测划分;计算各划分聚类质量并构造为质量曲线;将得到的聚类数和聚类中心通过模糊C-均值(FCM)运算获得量测划分。仿真结果表明,利用所提方法对量测集进行划分,能够得到准确的划分结果且计算代价得到降低。  相似文献   

8.

为确定??-means 等聚类算法的初始聚类中心, 首先由样本总量及其取值区间长度确定对应维上的样本密度统计区间数, 并将满足筛选条件的密度峰值所在区间内的样本均值作为候选初始聚类中心; 然后, 根据密度峰值区间在各维上的映射关系建立候选初始聚类中心关系树, 进一步采用最大最小距离算法获得初始聚类中心; 最后为确定最佳聚类数, 基于类内样本密度及类密度建立聚类有效性评估函数. 针对人工数据集及UCI 数据集的实验结果表明了所提出算法的有效性.

  相似文献   

9.
k-means聚类算法的有效性依赖于初始中心的选择。提出一种利用样本点空间分布的邻域密度来选择合理的初始中心的算法。提出的算法是对DK算法[2]的一种改进。有两方面改进:一是通过合理地选择距离阈值来静态地选择初始聚类中心,称为DK-Ⅱ-S算法;二是通过对选择样本点计算密度与已选择聚类中心最小距离的加权,使得该点被选择为初始中心点的概率与这个加权成正比,动态地选择初始聚类中心,称为DK-Ⅱ-D算法。在一个实际文本数据集上进行实验计算,证实算法改进的效果良好。  相似文献   

10.
针对传统K—means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K—means聚类算法。该算法选取相互间距离最大的K对高密度点,并以这足对高密度点的均值作为聚类的初始中心,再进行K—means聚类。实验结果表明,该算法有效排除样本中含有的孤立点,并且聚类过程收敛速度快,聚类结果有更好的准确性和稳定性。  相似文献   

11.
王军  周凯  程勇 《计算机应用》2019,39(2):403-408
密度峰值聚类(DP)算法是一种新的基于密度的聚类算法,当它处理的单个聚类包含多个密度峰值时,会将每个不同密度峰值视为潜在聚类中心,以致难以在数据集中确定正确数量聚类,为此,提出一种混合的密度峰值聚类算法C-DP。首先,以密度峰值点为初始聚类中心将数据集划分为子簇;然后,借鉴代表点层次聚类算法(CURE),从子簇中选取分散的代表点,将拥有最小距离的代表点对的类进行合并,引入参数收缩因子以控制类的形状。仿真实验结果表明,在4个合成数据集上C-DP算法比DP算法聚类效果更好;在真实数据集上的Rand Index指标对比表明,在数据集S1上,C-DP算法比DP算法性能提高了2.32%,在数据集4k2_far上,C-DP算法比DP算法性能提高了1.13%。由此可见,C-DP算法在单个类簇中包含多密度峰值的数据集中能提高聚类的准确性。  相似文献   

12.
针对DBSCAN算法存在的参数敏感性和不能区分相连的不同密度的簇等缺陷,提出了一种基于DBSCAN算法的改进算法。算法提出了累积平均密度的概念,用来作为簇合并的依据,弱化了密度阈值Minpts的作用;选取密度最大的对象作为初始聚类中心,按照密度由高到低的顺序进行聚类,具有一定的层次性,因此支持变密度数据集聚类。最后,用数据集对算法进行了聚类实验。实验结果表明,改进算法具有一定的参数鲁棒性,对于相连的不同密度的簇,能够达到理想的聚类效果。  相似文献   

13.
传统基于划分的聚类算法需要人工给定聚类数,且由于算法采取刚性划分,可能会导致将较大或延伸状的聚类簇分割的现象,导致错误的聚类结果。密度峰聚类是近年提出的一种新的基于密度的聚类算法,该算法不需要预先指定聚类数目,且能够发现非球形簇。将密度峰思想引入基于划分的聚类算法,提出一种基于密度峰和划分的快速聚类算法(DDBSCAN),该算法首先获取一组簇的核心对象(密度峰),用于描述簇的“骨骼”,而后将周围的点划分到最近的核心对象,最后通过判断划分边界处的密度情况合并簇。实验证明,该算法能有效地适应任意形状、大小不一的数据集,与传统基于密度的聚类算法相比收敛速度更快。  相似文献   

14.
针对粗糙K-means聚类及其相关衍生算法需要提前人为给定聚类数目、随机选取初始类簇中心导致类簇交叉区域的数据划分准确率偏低等问题,文中提出基于混合度量与类簇自适应调整的粗糙模糊K-means聚类算法.在计算边界区域的数据对象归属于不同类簇的隶属程度时,综合考虑局部密度和距离的混合度量,并采用自适应调整类簇数目的策略,获得最佳聚类数目.选取数据对象稠密区域中距离最小的两个样本的中点作为初始类簇中心,将附近局部密度高于平均密度的对象划分至该簇后再选取剩余的初始类簇中心,使初始类簇中心的选取更合理.在人工数据集和UCI标准数据集上的实验表明,文中算法在处理类簇交叠严重的球簇状数据集时,具有自适应性,聚类精度较优.  相似文献   

15.
为了更好地评价无监督聚类算法的聚类质量,解决因簇中心重叠而导致的聚类评价结果失效等问题,对常用聚类评价指标进行了分析,提出一个新的内部评价指标,将簇间邻近边界点的最小距离平方和与簇内样本个数的乘积作为整个样本集的分离度,平衡了簇间分离度与簇内紧致度的关系;提出一种新的密度计算方法,将样本集与各样本的平均距离比值较大的对象作为高密度点,使用最大乘积法选取相对分散且具有较高密度的数据对象作为初始聚类中心,增强了K-medoids算法初始中心点的代表性和算法的稳定性,在此基础上,结合新提出的内部评价指标设计了聚类质量评价模型,在UCI和KDD CUP 99数据集上的实验结果表明,新模型能够对无先验知识样本进行有效聚类和合理评价,能够给出最优聚类数目或最优聚类范围.  相似文献   

16.
针对大数据环境下传统并行密度聚类算法中存在的数据划分不合理,聚类结果准确度不高,结果受参数影响较大以及并行效率低等问题,提出一种MapReduce下使用均值距离与关联性标记的并行OPTICS算法——POMDRM-MR。算法使用一种基于维度稀疏度的减少边界点划分策略(DS-PRBP),划分数据集;针对各个分区,提出标记点排序识别簇算法(MOPTICS),构建数据点与核心点之间的关联性,并标记数据点迭代次数,在距离度量中,使用领域均值距离策略(FMD),计算数据点的领域均值距离,代替可达距离排序,输出关联性标记序列;最后结合重排序序列提取簇算法(REC),对输出序列进行二次排序并提取簇,提高算法局部聚类的准确性和稳定性;在合并全局簇时,算法提出边界密度筛选策略(BD-FLC),计算筛选密度相近局部簇;又基于n叉树的并集型合并与MapReduce模型,提出并行局部簇合并算法(MCNT-MR),加快局部簇收敛,并行合并局部簇,提升全局簇合并效率。对照实验表明,POMDRM-MR算法聚类效果更佳,且在大规模数据集下算法的并行化性能更好。  相似文献   

17.
为了提高K-medoids算法的精度和稳定性,并解决K-medoids算法的聚类数目需要人工给定和对初始聚类中心点敏感的问题,提出了基于密度权重Canopy的改进K-medoids算法。该算法首先计算数据集中每个样本点的密度值,选择密度值最大的样本点作为第1个聚类中心,并从数据集中删除这个密度簇;然后通过计算剩下样本点的权重,选择出其他聚类中心;最后将密度权重Canopy作为K-medoids的预处理过程,其结果作为K-medoids算法的聚类数目和初始聚类中心。UCI真实数据集和人工模拟数据集上的仿真实验表明,该算法具有较高的精度和较好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号