首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 866 毫秒
1.
肖大恒  汤伟  罗登  王振  谢振家  尚成嘉 《钢铁》2020,55(4):82-87
 为了满足超大型液化石油气船的建造需要,介绍了采用铌、钛复合微合金化及控制轧制与控制冷却技术研制超大型液化石油气船用LT-FH32低温钢,并对其显微组织演变及力学性能进行系统研究。CCT曲线研究表明,当冷却速度小于3 ℃/s时,LT-FH32低温钢主要获得多边形铁素体和少量珠光体组织;冷却速度为5~15 ℃/s时,主要为多边形铁素体、针状铁素体和贝氏体的多相组织;当冷却速度大于20 ℃/s时,主要为板条贝氏体组织。经控制轧制和控制冷却获得的10和34 mm板厚的低温钢,其显微组织均为多边形铁素体和板条贝氏体多相组织。两种板厚的多相组织低温钢横、纵向性能差异不大,屈服强度为390~413 MPa,抗拉强度为485~521 MPa,-80 ℃夏比冲击功高于200 J,韧脆性转变温度为-100 ℃以下。  相似文献   

2.
孙宪进  杜鹏举  赵乾 《特殊钢》2022,43(5):74-77
通过JMatpro软件、扫描电镜、力学性能测试,对Q500qE 60 mm厚度500 MPa级低屈强比高强钢板进行了连续冷却转变(CCT)曲线、钢板显微组织与力学性能、焊接接头力学性能分析。结果表明,通过控轧控冷工艺:终轧温度800~840℃,入水温度660~680℃和终冷温度400~450℃,该钢组织为铁素体+贝氏体+马氏体/奥氏体岛,两相交界处和贝氏体内部存在大量大角度晶界。钢板1/4和1/2厚度位置屈服强度≥500 MPa,抗拉强度≥640 MPa,屈强比≤0.80,-40℃低温冲击功≥200 J,焊接热影响区-40℃低温冲击功≥100 J  相似文献   

3.
在实验室试制了X120管线钢,并绘制了X120管线钢的连续冷却转变曲线。结果表明:热轧态时试验钢的屈服强度平均值为905 MPa,抗拉强度平均值为980 MPa,伸长率平均值为17%,屈强比为0.92,-20℃的冲击功平均值为90J。经600℃回火2h后,试验钢的屈服强度平均值达到了950 MPa,抗拉强度平均值达到了1 000 MPa,伸长率平均值为18%,屈强比为0.95,-20℃的冲击功平均值为95J。经过压缩后,冷却速度为5℃/s时试验钢的组织即全部为板条贝氏体组织,而该组织为X120级管线钢中的理想组织。  相似文献   

4.
衣海龙  徐洋  孙明雪  刘振宇 《钢铁》2013,48(2):49-52
 以一种屈服强度为600MPa的热轧高强钢为研究对象,进行了超快冷工艺与层流冷却工艺的对比试验,对试验钢进行了力学性能、SEM、TEM及EDS分析。结果表明:与层流冷却工艺相比,超快冷工艺有效提高了钢的性能,屈服强度和抗拉强度分别提高了90和60MPa,其屈服强度、抗拉强度和断后伸长率分别为670、740MPa及19%,-20℃冲击功为105J,具有良好的强度及韧性。经过超快冷后,试验钢的组织为细化的铁素体,其强化相为细小的铁素体及细小析出物。  相似文献   

5.
作为1种低成本生产E420级别海洋平台用钢的工艺路线,采用添加少量微合金元素的成分设计,利用超快冷技术,有效控制冷却过程以改善钢材的微观组织。采用以上工艺试制的50mm海洋平台钢板,获得了良好的综合力学性能,屈服强度大于445MPa,抗拉强度大于578MPa,-40℃冲击功大于200J。  相似文献   

6.
《特殊钢》2017,(5)
试验用EH460钢(/%:0.06~0.08C,0.20~0.33Si,1.51~1.52Mn,0.003~0.013P,0.002S,0~0.18Mo,0.34~0.36Ni,0.04~0.05Nb,0.05~0.06V,0.013~0.015Ti,0.006~0.026Als)300 mm铸坯由Φ550 mm轧机轧制成60 mm钢板,终轧温度798~817℃,冷却速率5~20℃/s。研究了不含Mo和含0.18%Mo对该钢组织和力学性能的影响。实验结果表明,当冷却速率为15℃时,不含Mo钢抗拉强度645~655 MPa,-40℃冲击功168~200 J,含0.18%Mo钢抗拉强度677~679 MPa,-40℃冲击功48~64 J;对于高强度船板钢EH460,采用含Mo钢,可以提高钢板强度,达到船级社对其强度要求(屈服强度≥460 MPa,抗拉强度570~720 MPa,-40℃冲击功≥46 J),但含较高Mo钢的冲击功降低较多,因此,在实际生产中,高强度船板钢EH460中的Mo含量,宜≤0.15%。  相似文献   

7.
利用扫描电镜、透射电镜等实验方法,研究不同回火温度下试验钢的组织性能变化情况.结果表明:经控轧控冷获得了贝氏体/马氏体复相海洋用钢,其中贝氏体体积分数约占30%;随着回火温度的升高,试验钢的屈服强度先上升后又略有下降,在600℃达到最大值,为983 MPa,抗拉强度明显下降,延伸率先降低后升高,在600℃回火温度达到最大值为19.6%,之后又开始降低,冲击功在400℃和600℃出现明显回火脆性;在550℃回火温度试验钢取得最佳力学性能,其中抗拉强度和屈服强度分别为1050MPa和981 MPa,延伸率为16.6%,-40℃低温冲击功为19.9 J.分析认为,回火过程中马氏体板条断裂消失,贝氏体相互合并形成准多边形铁素体,析出物逐渐回溶和重新析出,造成力学性能的变化差异.  相似文献   

8.
基于工程机械用钢需要满足重载、冲击和降耗的要求,这类钢铁材料在具有高强度级别的同时还应具有良好的低温韧性水平。本文设计一种辅以Cu、Ti、Nb、B、Mo、Ni复合微合金化的成分体系,采用不同的轧制、冷却及热处理工艺,对比分析了Q960高强度钢的组织及力学性能,在实验室试验出一种工程机械用高强钢Q960的生产工艺。结果表明:通过合适的轧制冷却及920℃淬火和180℃回火的调质处理工艺,可以获得细小的马氏体和残余奥氏体组织,满足屈服强度960MPa、抗拉强度1 150 MPa、-40℃冲击功27 J、伸长率10.0%的性能要求,为工业试制提供了理论依据。  相似文献   

9.
通过力学性能测试及OM、SEM、EBSD、XRD显微组织分析,研究了正火终冷温度对U26Mn2Si2CrNiMo贝氏体奥氏体钢力学性能的影响。结果表明,当正火终冷温度为330℃时,其屈服强度达到1 246 MPa,抗拉强度达到1 335 MPa,伸长率为14.4%,室温冲击功为84 J,-40℃低温冲击功为38 J。随着正火终冷温度的降低,其屈服强度有所降低,但是抗拉强度增加,同时其伸长率和冲击功均逐渐降低。随正火终冷温度的降低,残余奥氏体体积分数逐渐降低,大角度晶界比例增加,残余奥氏体的取向稳定性和机械稳定性均降低,当温度降低至300℃时,残余奥氏体消失。同时低的正火终冷温度将增大贝氏体铁素体间的应变梯度,晶界失去了对裂纹扩展的阻碍作用,这些因素的协同作用导致综合力学性能的降低。  相似文献   

10.
回火温度对Q960级高强结构钢组织及力学性能的影响   总被引:1,自引:0,他引:1  
卢峰  康健  王超  王昭东  王国栋 《钢铁》2012,47(2):92-95
 以屈服强度960MPa级高强调质结构钢板开发为目标,研究了在相同轧制及淬火条件下,回火温度对试验钢显微结构及力学性能的影响。结果表明:随回火温度的升高,试验钢强度下降,韧塑性总体上呈现升高趋势,其中在300~450℃范围内出现一个韧塑性能的恶化区。当回火温度为600℃时,试验钢呈回火索氏体组织,屈服强度为1030MPa,抗拉强度为1080MPa,伸长率为15.9%,-40℃冲击功达144J,各项指标均满足国标GB/T 16270—2009要求。并对试验钢的拉伸力学性能进行了探讨。  相似文献   

11.
以高氢冷却工艺连退生产线为基础,以 900 MPa 级冷轧马氏体超高强钢为研究对象,研究了连续冷却相变区转变规律和连退快速冷却工艺对钢的力学性能和显微组织的影响。结果表明,连续冷却相变区由先共析铁素体转变区、贝氏体转变区和马氏体转变区组成,随着冷却速度的增加,先共析铁素体含量逐渐下降,贝氏体和马氏体含量逐渐上升,当冷却速度大于 40 ℃/s 时,不再有先共析铁素体生成;当冷却速度大于 80 ℃/s 时,则完全进入马氏体转变区。随着连退快冷工艺中冷却速度的增加,钢的屈服强度、抗拉强度和屈强比逐渐增加,断后伸长率逐渐下降。当冷却速度为 50 ℃/s 时,钢的屈服强度、抗拉强度和断后伸长率就已经达到了 900 MPa 级冷轧马氏体超高强钢的力学性能要求。  相似文献   

12.
为了开发并稳定600 MPa级低合金高强钢的生产工艺参数,利用连续退火模拟机对试验钢进行了连续退火试验,并通过扫描电镜和拉伸试验机研究了均热温度和过时效温度对试验钢显微组织和力学性能的影响。结果表明,随着均热温度的升高,试验钢的屈服强度和抗拉强度均逐渐减小,伸长率逐渐增大;随着过时效温度的升高,屈服强度逐渐增大,抗拉强度逐渐减小,伸长率则先增大后减小。试验钢在820 ℃均热、390 ℃过时效时,获得最优的力学性能,其中抗拉强度为627 MPa,屈服强度为493 MPa,总伸长率超过20%。此外,利用透射电镜观察到钢中存在大量的纳米尺度析出物,这些析出物对试验钢强度的提升有较大的贡献。  相似文献   

13.
采用正火控冷试验研究Q370q E钢板的生产工艺,结合力学试验和金相组织研究正火控冷工艺对Q370q E钢板组织和性能的影响,结果表明:钢板强度随冷却速度的增加和终冷温度的降低而增加,当冷却速率在8℃/s~14℃/s时,终冷温度在600℃~660℃之间,屈服强度增加约10 MPa~50 MPa,抗拉强度增加约0 MPa~20 MPa,组织为细化的铁素体和珠光体,满足桥梁钢所需的力学性能、冲击性能和焊接性能。  相似文献   

14.
南阳汉冶特钢公司通过采用KR脱S、LF精炼、VD真空处理、模铸保护浇铸等手段确保钢水纯净度以及通过采用"高温、低速、大压下"轧制、轧后控冷、热处理等手段确保钢板内部组织细密、均匀,成功研发出厚度达130mm的Q345qDZ35特厚桥梁板。性能检测结果表明,屈服强度、抗拉强度平均富裕量达30MPa以上、伸长率平均富裕量达7.0%以上,-20℃低温冲击平均富裕量达100J以上,Z向拉伸平均富裕量达40%,各项性能均满足特厚桥梁钢的使用要求。  相似文献   

15.
随着矿井深度的增加,对锚杆支护强韧性的要求越来越高,为了应对这一情况,需要研发出更高强度的锚杆钢。利用锚杆钢研究了轧制工艺、冷却工艺与珠光体、铁素体相比例,析出相析出行为及力学性能的关系。研究结果表明,在中轧后、精轧前采用适当水冷+回复段处理的复合工艺可使晶粒更细小、组织更均匀。对超高强度锚杆钢进行热压缩变形试验,由热模拟试验结果确定相转变温度为Ac1=737 ℃、Ac3=886 ℃。最终筛选出入精轧温度为810 ℃、回复段温度为800 ℃时,可获得的晶粒尺寸达4 μm,珠光体体积分数为66.8%,铁素体体积分数为33.2%,珠光体片层间距达200 nm;另外调整V、Cr、N等析出以提高锚杆钢的强韧性,较低的回复温度有利于细小、弥散、V(C/N)析出相的析出,V(C/N)的析出可进一步改善锚杆钢的力学性能。由该控轧控冷工艺轧制的锚杆钢屈服强度为780 MPa、抗拉强度为930 MPa、硬度为291HV、伸长率为20%。  相似文献   

16.
为了满足桥梁钢Q420qD高强、高韧性的要求,采用低碳、铌、钒、钛微合金化成分设计方案,应用铁水预处理、自动化炼钢控制钢水洁净度,采用电磁搅拌及重压下等工艺手段保证铸坯质量,利用新一代TMCP工艺,控制钢板的组织细化和均匀,保证产品的综合力学性能。通过力学性能的测试和组织检测,开发钢种屈服强度在450~510 MPa,抗拉强度在560~640 MPa,伸长率在21%~25%,-20 ℃冲击功全部在200 J以上,屈强比全部小于0.85,Ⅱ级探伤全部合格;在Gleeble3500试验机上测定了钢种的动态CCT曲线,为制定控轧控冷工艺提供理论基础;应用透射对析出物的分析表明,析出强化贡献量占全部强度的15%以下,强化机制以固溶强化、细晶强化和贝氏体相变强化为主。  相似文献   

17.
试验研究了Q345D级钢(%:0.18C、0.41Si、1.34Mn、0.05Nb、0.08V、0.024A1)Φ280 mm锻材淬-回火处理和正火处理后的组织和性能。结果表明,经890℃空冷200 s,水冷+570℃回火后的钢抗拉强度Rm≥630MPa,屈服强度Re≥455 MPa, -20℃冲击功AKV 28~40 J;910℃空冷正火后Rm≥575 MPa, Re≥390 MPa, -20℃ AKV42~59 J,均满足舵杆产品对力学性能的要求;淬-回火工件距表面30 mm的组织为回火索氏体+粒状贝氏体,中心组织为珠光体+少量粒状贝氏体,正火处理后工件表面与心部均为珠光体+铁素体组织。  相似文献   

18.
屈服强度450 MPa级新型耐候钢研制   总被引:1,自引:0,他引:1  
郭慧英  张宇  王银柏  许红梅 《钢铁》2014,49(11):68-73
 通过连续冷却相转变行为研究,成功试制了20 mm厚屈服强度450 MPa级耐候钢板,并对钢板的显微组织、力学性能、耐腐蚀性能及焊接性能进行了分析。连续冷却相变行为和钢板试制结果表明:精轧温度约为850 ℃、累计压下率不小于0.6、轧后冷速为15~30 ℃/s、终冷温度不大于579 ℃可以得到以多边形铁素体(晶粒尺寸为3~10 μm)和退化珠光体为主并含有少量马奥岛(M-A组元)的钢板,其屈服强度和抗拉强度分别为458和557 MPa,伸长率不小于 28%,-60 ℃冲击功不小于 287 J,其优异的低温冲击韧性与钢板有效晶粒尺寸较小以及大角度晶界所占比例较高有关。72 h亚硫酸氢钠和氯化钠溶液周期性浸润试验结果显示,试制钢板的耐蚀性能比Q345B分别提高了约49%和40%。对试制钢板进行线能量为30 kJ/cm的埋弧焊焊接试验,得到的焊接接头热影响区熔合线处-40 ℃冲击功为156 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号