首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Absorption of SO2 from a SO2/air mixture with sodium citrate buffer solution was investigated using a rotating packed bed(RPB) in laboratory scale.The effects of operating parameters,such as the rotation speed of RPB,liquid-gas ratio,inlet gas flow rate,inlet concentration of SO2 in flue gas,sodium citrate buffer concentration and initial pH of absorption solution,on the SO2 concentration in the absorption solution or removal efficiency of SO2 were examined.Incremental rate of sulfate radical ions in the absorption solution was also examined.Experimental results indicate that the efficiency of this regenerative process will be improved by using RPB under appropriate operating conditions,and the generation of SO2-4 will be restrained in the process in RPB.  相似文献   

2.
A novel and efficient extraction/hydrolysis method was developed for the recovery of resveratrol and emodin from a well-known traditional chinese medicinal herb, Polygonum cuspidatum. By using a 85% aqueous acetone solution containing 1.0 mol/L HCl as extractant, extraction of resveratrol and emodin from P. cuspidatum and conversion of resveratrol-3-O-β-glucoside and emodin-8-O-β-D-glucoside into the products could be achieved in one step. The effects of several key parameters including concentration of HCl and acetone, temperature, ratio of solvent to material, extraction duration and extraction times on the process efficiency was systematically investigated. The results showed that the optimal conditions for maximizing the recovery yield were 85% acetone containing 1.0 mol/L HCl as extractant, temperature 70 ℃, ratio of liquid to solid 50 mL /g and extraction duration 30 min. This one-pot extraction/hydrolysis process increased the yield of resveratrol and emodin to 524% and 302%, respectively, compared to a raw sample without hydrolysis. Compared with conventional method, the developed process not only achieved high yield of resveratrol and emodin, but simplified the procedures and reduced time. The results demonstrated that the simultaneous extraction/hydrolysis process is simple and efficient which could act as a useful approach for enhanced recovery of resveratrol and emodin from P. cuspidatum.  相似文献   

3.
A new process for the direct chlorination of 2-chloro-5-methylpyridine to yield 2-chloro-5-chloro-methylpyridine in an airlift loop reactor (ALR) has been studied.Five main reaction conditions including TR,na/ns,cp,Qg and dD/dR were optimized.The average molar yield and purity of 2-chloro-5-chloromethylpyridine obtained were 79% and 98.5% respectively under the optimum operating conditions.Finally,the efficiency for the preparation of 2-chloro-50chloromethylpyridine with ALR and stirred tank reactor(STR) respectively was compared.  相似文献   

4.
In order to reduce the production cost of imidacloprid, the preparation technology for the direct combination of 2-chloro-5-chloromethylpyridine and 2-nitryliminoglyoxaline has been optimized in a 10L stirred tank reactor with a new solvent, butanone, and a new catalyst, benzyl triethyl-ammonium chloride (BTEAC), which was proved to be more profitable for the production of imidacloprid. Three main affecting factors (the reaction temperature, the molar ratio of BTEAC to 2-nitryliminoglyoxaline and the concentration of 2-nitryliminoglyoxaline) for the production of imidacloprid were investigated and the optimum operating conditions were found. Based on the above technological optimization, an industrial process for imidacloprid with a production capacity of 50 tons per year was put in operation using a 2500 L stirred tank reactor under the same operating conditions. Good yield and purity of imidacloprid was also obtained ia the industrial production.  相似文献   

5.
The rare ginsenoside Compound K(C-K) is attracting more attention because of its good physiological activity and urgent need. There are many pathways to obtain ginsenoside C-K, including chemical and biological methods. Among these, the conversion of PPD-type ginsenosides by enzymatic hydrolysis is a trend due to its high efficiency and mild conditions. For effectively extracting from the other panaxadiol saponins, the conversion process for ginsenoside C-K was investigated using snailases in this study. The univariate experimental design and response surface methodology were used to determine the optimal hydrolysis conditions for the conversion of ginsenoside Rb1 into ginsenoside C-K by snailases. The optimum conditions were as follows: p H 5.12, temperature 51 °C, ratio of snailase/substrate 0.21, and reaction time 48 h. On the basis of these parameters, the addition of 1.0 mmol·L~(-1) ferric ion was found to significantly improve the enzymolysis of snailases for the first time. With the above conditions, the maximum conversion rate reached 89.7%, suggesting that the process can obviously increase the yield of ginsenoside C-K. The bioassay tests indicated that the ginsenoside C-K showed anti-tumor activity in a series of tumor cell lines. Based on these results, we can conclude that the process of rare ginsenoside CK production by enzymolysis with snailase is feasible, efficient, and suitable for the industrial production and application.  相似文献   

6.
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)~(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.  相似文献   

7.
Cleaner Production of Wheat Straw Pulp   总被引:1,自引:0,他引:1  
A pulping method using NH4OH with less amount of KOH as cooking liquor on wheat straw was developed. KOH could reduce consumption of NH3 and cooking time for its strong alkalinity. The effects of various pulping conditions such as composition of cooking liquor, liquid-to-solid ratio, maximum temperature, cooking time to the maximum temperature and cooking time at the maximum temperature were studied. Experimental results indicated that the rate of delignification was 85.12% and the pulp yield was 49.65% under suitable pulping conditions. It looks promising to use black liquor containing nitrogen, phosphorus, potassium and organic substance as fertilizer resources for agricultural production. A new pattern of ecological cycling may be set up between paper industry and farming.  相似文献   

8.
玉米秸秆中半纤维素的高效综合利用   总被引:1,自引:0,他引:1       下载免费PDF全文
Pretreatment of the corn stover powder by dilute sulphuric acid (solid-liquid ratio 1︰20) at 130°C for 30 min was carried out with 89.09% of the hemicellulose removed. After filtration, the xylose-rich corn stover pretreatment liquid, whose fermentable sugar was from hemicellulose hydrolysis only, consisting of 81.16% xylose and 15.27% glucose, was used to cultivate genetic recombinant Escherichia coli BL21 with human-like collagen (HLC) expression enhanced by 50.00% and 63.71% xylose consumption.  相似文献   

9.
Response surface methodology(RSM) was used to determine the optimum conditions of the methanolysis of crude poppy seed oil using Na OCH3 as catalyst. The experiments were run according to five levels, four variable central composite rotatable design(CCRD) using RSM. The reaction variables, i.e., molar ratio of methanol/oil(3:1–9:1), catalyst concentration(0.5 wt%–1.25 wt% Na OCH3), reaction temperature(25–65 °C), and reaction time(20–90 min) were studied. We demonstrated that the molar ratio of methanol/oil, catalyst concentration,and reaction temperature were the significant parameters affecting the yield of poppy seed oil methyl esters(PSOMEs). The optimum transesterification reaction conditions, established using the RSM, which offered a89.35% PSOME yield, were found to be 7.5:1 molar ratio of methanol/oil, 0.75% catalyst concentration, 45 °C reaction temperature, and 90 min reaction time. The proposed process provided an average biodiesel yield of more than 85%. A linear correlation was constructed between the observed and predicted values of the yield.The gas chromatography(GC) analyses have shown that PSOMEs contain linoleic-, oleic-, palmitic-, and stearic-acids as main fatty acids. The FTIR spectrum of the PSOMEs was also analyzed to confirm the completion of the transesterification reaction. The fuel properties of the PSOMEs were discussed in light of biodiesel standards(ASTM D 6751 and EN 14214).  相似文献   

10.
The process of resolution of racemic ketoprofen using n-octyl-d-glucamine as an optical resolution agent was investigated. The process consists of preparation of the diastereomer salt of ketoprofen with n-octyl-d-glucamine, liberation of S-(+)-ketoprofen from its diastereomer salt and recovery of the remaining ketoprofen and n-octyl-d- glucamine. The suitable conditions for preparation of the diastereomer salt were methanol and ethyl acetate (1:1 by volume) as the solvent, the ratio of solvent volume to ketoprofen mass at 8 ml:1 g, and the molar ratio of ketoprofen to n-octyl-d-glucamine at 1:1. The preferred approach to liberate S-(+)-ketoprofen from its diastereomer salt was alkali dissolution, acid adjustment and ethyl acetate extraction. Racemization of the recovered ketoprofen could be achieved by reacting the recovered ketoprofen with 10% NaOH at 507kPa for 6h. The recovered n-octyl-d- glucamine could be refined by acid dissolution and alkali adjustment. S-(+)-ketoprofen can be obtained with high optical purity and yield, showing that the present process is a practical and efficient one which can be used in industrial scale for preparation of S-(+)-ketoprofen.  相似文献   

11.
利用农作物秸秆进行厌氧发酵生产沼气是解决我国农村能源紧张的重要途径,然而秸秆中难以降解的木质纤维结构导致在发酵过程中甲烷转化率较低。利用自行设计的可控性恒温发酵装置,以玉米秸秆为发酵原料,分析了在不同温度条件下氢氧化钠(NaOH)预处理对秸秆木质纤维结构以及厌氧发酵产气效率的影响。结果表明,NaOH预处理能够显著降低玉米秸秆的木质纤维素含量,与未预处理的秸秆相比,经NaOH处理后的秸秆纤维素含量降低了24.4%~33.2%,半纤维素含量降低了14.2%~52.4%,木质素含量降低了9.3%~29.3%。在6%、8%和10%浓度中,经8%NaOH处理的秸秆在55℃下的甲烷产量最高,达到188.7 ml CH4·(g VS)-1,较未处理的增加了84.2%,因此可作为提高秸秆厌氧发酵产气效率的预处理方法。  相似文献   

12.
The effect of [HCOOH]/[HCOONa] ratio on the oxidation activity of HOOH and HCOONa blended fuel solution on Pt nanocatalyst is studied using cyclic voltammetry, chronoamperometry, and Tafel analysis. Five electrolyte solutions with the same total concentrations of HCOOH and HCOONa but different [HCOOH]/[HCOONa] ratios are tested. Blended solutions containing both higher HCOOH and HCOONa concentrations are found to be more active than single HCOOH or HCOONa solution, with the solution containing 0.8 mol dm–3 HCOONa and 0.2 mol dm–3 HCOOH exhibiting the best activity. The reasons behind the better performance of the HCOOH and HCOONa blended solutions – such as electric conductivity, pH, concentrations of HCOOH, and HCOONa, ionic strength of the solution, and oxidation mechanism of HCOOH – are investigated. Enhanced oxidation activity of the HCOOH and HCOONa blended solution is observed to be the mutual effect of various reasons, with pH and [HCOO] assuming the key roles.  相似文献   

13.
麦秸纤维素酶解法制糖研究   总被引:15,自引:3,他引:12  
李稳宏  吴大雄 《化学工程》1998,26(1):54-57,61
对麦秸纤维素预处理过程的影响因素进行了探索,着重对酶解产糖工艺过程进行了讨论分析。结果表明:粉碎至120~150目并经1%NaOH溶液浸渍的麦秸是一种理想的制糖原料;当该原料在50~55℃,pH为4.4,时间为15h以及适宜的酶与底物配比条件下,可获得理想的产糖率。  相似文献   

14.
通过污泥与秸秆(玉米秸秆、水稻秸秆、小麦秸秆、芝麻秸秆)慢速共热解的方法,在不同热解温度(300℃、400℃、500℃、600℃)、热解时间(0.5h、1h、1.5h、2h)及配比(污泥与生物质1∶0、1∶0.5、1∶1、1∶2)条件下制备4种生物质炭,即SCBC(污泥-玉米秸秆生物质炭)、SRBC(污泥-水稻秸秆生物质炭)、SWBC(污泥-小麦生物质炭)、SSBC(污泥-芝麻生物质炭),研究了不同热解条件对生物质炭产率、pH、元素组成、表面特征、吸附性能的影响,并根据吸附性能筛选出各生物质炭的最优制备工艺。结果表明,热解温度为500℃、热解时间为2h、污泥与玉米秸秆、芝麻秸秆配比为1∶1时,污泥与水稻秸秆、小麦秸秆配比为1∶2时,制备的生物质炭吸附性能最优。最优制备工艺条件下,4种生物质炭吸附性能相比:SWBC > SRBC > SCBC > SSBC。  相似文献   

15.
刘程  刘振  李龙飞  张世英  许爱荣 《化工进展》2018,37(5):1789-1794
生物质是来源丰富的可再生资源,去除生物质中的木质素是提高生物质的糖化发酵效率的关键。本文利用含NaOH的离子液体氯化1-烯丙基-3-甲基咪唑([Amim]Cl)溶液对玉米秸秆进行处理,从反应温度、反应时间和固液比3个方面研究其脱除木质素的效果,采用单因素实验和Box-Behnken中心组合实验对反应条件进行优化,对比分析处理前后的秸秆的组成和结构变化。结果表明:在反应温度86.8℃,反应时间1.48h,固液比1∶9g/mL时,处理后秸秆中纤维素含量达到83.69%,木质素含量为3.29%,木质素脱除率达81.73%,反应温度对纤维素含量影响最显著。本工作可为玉米秸秆的资源化利用提供参考。  相似文献   

16.
在 50 ℃ 下,对速生杨木粉原料进行苯-醇预处理,得到脱脂杨木粉。后进行超声波乙醇-碱处理,得到碱脱木质素杨木粉。再运用正交试验设计法研究了抽提温度、抽提时间和NaOH溶液质量分数对速生杨半纤维素得率的影响。结果表明:NaOH溶液质量分数对半纤维素的提取率影响最为显著,而抽提时间的影响最小。最佳抽提条件为:抽提温度 90 ℃、抽提时间 12 h、NaOH溶液质量分数 8 %,在此条件下的半纤维素的提取率为 87.20 %。通过傅里叶红外光谱,核磁共振光谱和组成分析,结果发现,碱法抽提所得半纤维素的主要成分是4-O-甲基葡萄糖醛酸基-木聚糖,木糖和葡萄糖醛酸糖基物质的量之比为22.83∶1,同时含有少量甘露糖、葡萄糖和半乳糖,它们的含量分别为 2.87 %、 0.83 % 和 0.55 %,对应的糖基比为3.46∶1∶0.66, 4-O-甲基葡萄糖醛酸基-木聚糖和葡萄糖基甘露聚糖两种半纤维素分别占 86 % 和 4 %,阿拉伯糖基木聚糖含量较低,另外含有约 4.5 % 木质素组分。  相似文献   

17.
符彬  郑霞  潘亚鸽  唐钱  陈茂 《中国塑料》2015,29(9):17-21
以麦秸纤维和聚乙烯为原料,通过模压成型制备了麦秸纤维增强聚乙烯复合材料,研究了改性剂(NaOH)浓度、麦秸纤维含量以及热压温度对复合材料力学性能的影响。结果表明,5 %NaOH处理可以溶解麦秸纤维中半纤维素、果胶等,使纤维更细化,比表面积增大,有效改善了复合材料力学性能;麦秸纤维含量为30 %(质量分数,下同)时,麦秸纤维与聚乙烯混合均匀性较好,复合材料的拉伸强度和冲击强度得到改善;热压温度为170 ℃时聚乙烯的流动性有助于改善麦秸纤维在聚乙烯中分散的均匀性,且不会使聚乙烯降解,复合材料拉伸强度和冲击强度分别达到了最大值46.1 MPa和13.8 MJ/m2。  相似文献   

18.
利用醋酸作为催化剂水解玉米芯中半纤维素来制备还原糖,测定了温度在160-200℃、固液质量比为1∶15、搅拌速度为500 r/min下,不同水解时间水解液中还原糖的收率以及副产物糠醛的收率.利用半纤维素高温液态水的Garrote模型拟合还原糖生成过程.实验表明,该模型能够较好地描述还原糖生成过程以及副产物糠醛的产生过程...  相似文献   

19.
张强  陈诗阳 《化工进展》2022,41(1):161-165
为了解氧气(O2)在玉米秸秆湿热预处理中的作用,优化玉米秸秆酒精生产工艺,本文采用三种不同湿热预处理条件处理玉米秸秆,即条件1(195℃,15min)、条件2(195℃,15min,12bar O2)和条件3(195℃,15min,12bar O2,2g/L Na2CO3),并利用酿酒酵母对预处理后的玉米秸秆同步糖化发酵酒精工艺(SSF)进行了研究。实验结果表明:经过预处理,玉米秸秆分为固体滤饼与水解液两部分,其中绝大部分纤维素以固体形式保留在滤饼中,而半纤维素和木质素由于不稳定则发生了部分水解或降解。三种预处理条件下纤维素总体收率分别为91.2%、94.6%和95.9%,半纤维素总体收率分别为74.5%、50.3%和68.2%,固体滤饼中木质素质量分数分别为25.2%、17.5%和13.7%,纤维素酶解葡萄糖率分别为64.8%、65.8%和67.6%。表明氧气对纤维素收率影响不大,能够促进半纤维素的溶出。氧气主要与木质素发生反应,尤其与碱性物质碳酸钠(Na2CO3)结合,能够促进木质素降解,从而获得了较高的纤维素收率和纤维素酶解葡萄糖率。因此在底物质量分数8%,经过酿酒酵母142h发酵,经条件3处理的玉米秸秆获得的酒精浓度最高,最终酒精浓度达到25.0g/L,并且整个发酵过程没有明显的抑制作用产生。  相似文献   

20.
实验研究了不同条件下钒渣焙烧与NaOH溶液水热浸出对钒浸出率的影响,并分析了过程机理. 结果表明,焙烧温度达700℃以上可实现钒铁尖晶石的氧化分解,850℃焙烧2 h是钒渣空白焙烧的最佳条件,浸出的最佳条件是反应温度180℃、钒渣粒度小于74 mm、反应时间2 h、液固比5 L/g、碱浓度30%(w)、搅拌速度500 r/min. 该条件下钒浸出率达95%以上,无有害气体产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号