首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 768 毫秒
1.
A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS 53.7%) is blended with the SPEEK matrix (DS 55.1%, 61.7%) to prepare SPEEK/SPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS 61.7%) membrane dissolves completely in water at 70ºC, whereas the swelling degree of the SPEEK (DS 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80ºC. From room temperature to 80ºC, the methanol permeability of all SPEEK (DS 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion®115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150ºC. The proton conductivity of SPEEK (DS 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S•cm-1, matching that of Nafion115 at 140ºC and 100% RH, while pure SPEEK (DS 55.1%) membrane dissolves at 90ºC. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

2.
The effect of graft yield on both the thermo-responsive hydraulic permeability and the thermo-respousive diffusional permeability through porous membranes with plasma-grafted poly(N-isopropylacrylamide) (PNIPAM)gates was investigated. Both thermo-respousive flat membranes and core-shell microcapsule membranes with a wide range of graft yield of PNIPAM were prepared using a plasma-graft pore-filling polymerization method. The grafted PNIPAM was formed homogeneously throughout the entire thickness of both the fiat polyethylene membranes andthe microcapsule polyamide membranes. Both the hydraulic permeability and the diffusional permeability were heavily dependent on the PNIPAM graft yield. With increasing the graft yield, the hydraulic permeability (water flux) decreases rapidly at 25℃ because of the decrease of the pore size; however, the water flux at 40℃ increases firstly to a peak because of the increase of hydrophobicity of the pore surface, and then decreases and finally tends to zero because of the pore size becoming smaller and smaller. For the diffusional permeability, the temperature shows different effects on the diffusional permeability coefficients of solutes across the membranes. When the graft yield was low, the diffusional coefficient of solute across the membrane was higher at temperature above the lower critical solution temperature (LCST) than that below the LCST; however, when the graft yield was high, the diffusional coefficient was lower at temperature above the LCST than that below the LCST. It is very important to choose or design a proper graft yield of PNIPAM for obtaining a desired thermo-respousive “on/off“ hydraulic or ditfusional permeability.  相似文献   

3.
This paper reports on ¬¬¬a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate (TEOS) and a bridged silsesquioxane [1, 2-bis(triethoxysilyl)ethane, BTESE] as precursors. A stable nano-sized composite silica sol with a mean volume size of ~5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporous γ-Al2O3 intermediate layer by using dip-coating ap-proach, followed by calcination under pure nitrogen atmosphere. The composite silica membranes exhibit molecular sieve properties for small gases like H2, CO2, O2, N2, CH4 and SF6 with hydrogen permeances in the range of (1-4)107 mol•m2•s1•Pa1 (measured at 200 C, 3.0×105 Pa). With respect to the membrane calcined at 500 C, it is found that the permselectivities of H2 (0.289 nm) with respect to N2 (0.365 nm), CH4 (0.384 nm) and SF6 (0.55 nm) are 22.9, 42 and >1000, respectively, which are all much higher than the corresponding Knudsen values (H2/N2 3.7, H2/CH4 2.8, and H2/SF6 8.5).  相似文献   

4.
Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA) were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most of the acid embedded are stable in the PVA matrix when the membrane is immerged in water or methanol solution at room temperature. Conductivity of the composite membranes scatters around 10-3S·cm-1 at room temperature. The methanol crossover through the membranes is about an order of magnitude lower than that through Nafion 117 membrane.  相似文献   

5.
Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane(PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution.The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction.Their structural morphology and thermal stability were also examined.The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25 C,suggesting that the membranes have stronger sorption capacity in acetaldehyde solution.The effects of ZSM-5 filling content and acetaldehyde concentration on pervaporation performance of composite membranes were investigated.The permeation experiments at different temperatures showed that both selectivity and permeation flux of composite membranes increased with temperature.With 5%ZSM-5-PDMS/Nylon membrane at acetaldehyde mass concentration of 8% and 25℃,the separation factor of acetaldehyde/water achieved 35 and the permeation flux was 233.3 g·m-2·h-1.  相似文献   

6.
Polybenzimidazole(PBI) is a kind of proton transport membrane material, and its ion conductivity is a key factor affecting its application in vanadium redox flow batteries(VRFBs). The casting solvent of PBI has a significant influence on the acid doping level of PBI membranes which is closely related to ionic conductivity. In this paper, 3,3′-diaminobenzidine(DABz) and 4,4′-Dicarboxydiphenylether(DCDPE) were used as raw materials by solution condensation to prepare the PBI with ether bond groups. The chemical structure of PBI was determined by1~H NMR and FT-IR, and the prepared PBI had good solubility which can be dissolved in a variety of solvents. The PBI proton exchange membranes were prepared by solution coating with 5 different solvents of N,N-dimethylformamide(DMF), N,N-dimethylacetamide(DMAc), dimethyl sulfoxide(DMSO), 1-methyl-2-pyrrolidone(NMP), methane sulfonic acid(MSA). The effects of different solvents on the ion conductivity and physicochemical properties were discussed in detail. The results showed that the PBI membrane prepared by using MSA as solvent(the PBI + MSA membrane) exhibits high water uptake, acid doping level and low vanadium ion permeability. The VRFB assembled with the PBI + MSA membrane exhibited higher coulombic efficiency(CE) 99.87% and voltage efficiency(VE) 84.50% than that of the commercial Nafion115 membrane at100 m A·cm~(-2), and after 480 cycles, the EE value can still be maintained at 83.73%. The self-discharge time of a single battery was recorded to be as long as 1000 h. All experimental data indicated that MSA is the best solvent for casting PBI membrane.  相似文献   

7.
Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embedded are stable in the PVA matrix when the membrane is immerged in water or methanol solution atroom temperature. Conductivity of the composite membranes scatters around 10-3 S.cm-1 at room temperature.The methanol crossover through the membranes is about an order of magnitude lower than that through Nafion117 membrane.  相似文献   

8.
Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation per-formance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40 C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g•m2•h1 and 26.1, respec-tively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.  相似文献   

9.
Densities and viscosities were measured as a function of composition for binary liquid mixture of diethylene glycol monoethyl ether [CH3CH2O(CH2)2O(CH2)2OH] + water from 293.15 to 333.15 K at atmospheric pressure, with a capillary pycnometer and Ubbelohde capillary viscometer respectively. From the experimental data, the excess molar volume VE, viscosity deviation η, and the excess energy of activation for viscous flow G*E were calculated. These data were correlated by the Redlich-Kister type equa-tions to obtain the coefficients and standard deviations. The results showed a strong molecular interaction between diethylene glycol monoethyl ether and water.  相似文献   

10.
Poly(vinylidene fluoride)(PVDF) is a semi-crystalline thermoplastic polymer with excellent thermal stability,electrochemical stability and corrosion resistance, which has been widely studied and applied in industrial nonmetallic heat exchanger and piezoelectric-film sensor. In this study, polyaniline(PANI) nanofibers were synthesized using dodecylbenzene sulfonic acid as the surfactant. The obtained PANI nanofibers were blended in PVDF matrix to enhance thermal conductivity and tensile strength of composite materials. Electric field was applied for the orientation of membrane structure during membrane formation. Scanning electron microscope(SEM) images exhibited that the PANI nanofibers were well-dispersed in the composite membranes. The structure of composite membranes was more orderly after alignment. X-ray diffraction(XRD) and differential scanning calorimetry(DSC) indicated that the content of PANI nanofibers contributed to the transformation of PVDF from α-phase to β-phase. Both the tensile strength and thermal conductivity of composite membranes were significantly improved. This tendency was further enhanced by the application of electric field. The maximum tensile strength was obtained when the content of PANI nanofibers was 3 wt%, which was 46.44% higher than that of pure PVDF membrane. The maximum thermal conductivity of composite membranes after alignment was 84.5% greater than that of pure PVDF membrane when the content of PANI nanofibers was 50 wt%. The composite membrane is a promising new potential material in heat transfer field and the mechanism explored in this study would be informative for further development of similar thermal conductive polymeric materials.  相似文献   

11.
Sulfonated poly(ether ether ketone) (SPEEK) is a very promising alternative membrane material for direct methanol fuel cells. However, with a fairly high degree of sulfonation (DS), SPEEK membranes can swell excessively and even dissolve at high temperature. This restricts membranes from working above a high tolerable temperature to get high proton conductivity. To deal with this contradictory situation, insolvable zirconium tricarboxybutylphosphonate (Zr(PBTC)) powder was employed to make a composite with SPEEK polymer in an attempt to improve temperature tolerance of the membranes. SPEEK/Zr(PBTC) composite membranes were obtained by casting a homogeneous mixture of Zr(PBTC) and SPEEK in N,N-dimethylacetamide on a glass plate and then evaporating the solvent at 60°C. Many characteristics were investigated, including thermal stability, liquid uptake, methanol permeability and proton conductivity. Results showed significant improvement not only in temperature tolerance, but also in methanol resistance of the SPEEK/Zr(PBTC) composite membranes. The membranes containing 30 wt-% ∼ 40 wt-% of Zr(PBTC) had their methanol permeability around 10−7 cm2·s−1 at room temperature to 80°C, which was one order of magnitude lower than that of Nafion?115. High proton conductivity of the composite membranes, however, could also be achieved from higher temperature applied. At 100% relative humidity, above 90°C the conductivity of the composite membrane containing 40 wt-% of Zr(PBTC) exceeded that of the Nafion?115 membrane and even reached a high value of 0.36 S·cm−1 at 160°C. Improved applicable temperature and high conductivity of the compositemembrane indicated its promising application inDMFC operations at high temperature. __________ Translated from Acta Polymerica Sinica, 2007, (4): 337–342 [译自:高分子学报]  相似文献   

12.
Sulfonated poly(ether ether ketone) (SPEEK) is a very promising alternative membrane material for direct methanol fuel cells. However, with a fairly high degree of sulfonation (DS), SPEEK membranes can swell excessively and even dissolve at high temperature. This restricts membranes from working above a high tolerable temperature to get high proton conductivity. To deal with this contradictory situation, insolvable zirconium tricarboxybutylphosphonate (Zr(PBTC)) powder was employed to make a composite with SPEEK polymer in an attempt to improve temperature tolerance of the membranes. SPEEK/Zr(PBTC) composite membranes were obtained by casting a homogeneous mixture of Zr(PBTC) and SPEEK in N,N-dimethylacetamide on a glass plate and then evaporating the solvent at 60°C. Many characteristics were investigated, including thermal stability, liquid uptake, methanol permeability and proton conductivity. Results showed significant improvement not only in temperature tolerance, but also in methanol resistance of the SPEEK/Zr(PBTC) composite membranes. The membranes containing 30 wt-% ∼ 40 wt-% of Zr(PBTC) had their methanol permeability around 10-7 cm2·s-1 at room temperature to 80°C, which was one order of magnitude lower than that of Nafion ¯115. High proton conductivity of the composite membranes, however, could also be achieved from higher temperature applied. At 100% relative humidity, above 90°C the conductivity of the composite membrane containing 40 wt-% of Zr(PBTC) exceeded that of the Nafion ¯115 membrane and even reached a high value of 0.36 S·cm-1 at 160°C. Improved applicable temperature and high conductivity of the composite membrane indicated its promising application in DMFC operations at high temperature.  相似文献   

13.
采用流延法制备了聚醚砜(PES)含量不同的PES/磺化聚醚醚酮(SPEEK)共混膜。PES与SPEEK具有良好的相容性。所制备PES/SPEEK共混膜的含水率、溶胀度和甲醇透过系数均随PES含量的增加而降低。虽然共混膜的质子传导性能有所降低.但阻醇性能和溶胀性能提高,这说明PES/SPEEK共混膜是一种很好的直接甲醇燃料电池用固体高分子电解质膜材料。  相似文献   

14.
以二氧化硅和磷钨酸改性磺化聚醚醚酮制得一种新型磺化聚醚醚酮复合膜。复合膜中杂多酸仍然保持着Keggin型PW12O430-阴离子的特征结构,二氧化硅和磷钨酸以无定形状态均匀分散于复合膜中。磷钨酸/二氧化硅/磺化聚醚醚酮复合膜的阻醇性能优于Nafion115;质子导电性能随着温度的提高有所增加。复合膜在磷钨酸中具有良好的稳定性。  相似文献   

15.
New types of metal–organic framework based hybrid materials are designed and prepared, which involving the hybridization of various content of boron phosphate (BPO4) with the precursor of HKUST-1. The structure of obtained HKUST-1/BPO4 hybrid materials (HB) is fully investigated, and then applied to construct sulfonated poly (ether ether ketone) (SPEEK) based proton exchange membranes (SPEEK/HB). Owing to effective interactions between hybrid materials and SPEEK matrix, the achieved composite membranes reflect a considerable improvement in mechanical and thermal stability, oxidative stability, methanol permeation, and proton conductivity. In particular, the tensile strength of SPEEK/HB-20 composite membrane is 41.3 MPa, which is 1.5 times higher than pristine SPEEK, and the methanol permeability reduced to one-third of SPEEK at the same time. The SPEEK/HB-10 displays the highest proton conductivity of 37.4 mS cm−1 at 80 °C, which is obviously higher than pristine SPEEK. These results reveal that the hybridization of HKUST-1 with BPO4 provide a promising candidate in the modification of proton exchange membranes (PEMs), and this strategy also possess great application potential in other types of MOFs-based hybrid materials.  相似文献   

16.
A crosslinked epoxy [4,4′‐diglycidyl‐(3,3′,5,5′‐tetramethylbiphenyl) epoxy resin (TMBP)], cured by phenol novolac (PN), was introduced into a sulfonated poly(ether ether ketone) (SPEEK) membrane (ion‐exchange capacity = 2.0 mequiv/g) with a casting‐solution, evaporation, and heating crosslinking method to improve the mechanical properties, dimensional stability, water retention, and methanol resistance. By Fourier transform infrared analysis, the interactions between the sulfonic acid groups and hydroxyl groups in the blend membranes were confirmed. The microstructure and morphology of the blend membranes were investigated with atomic force microscopy. As expected, the blend membranes showed excellent mechanical properties, good thermal properties (thermal stability above 200°C), lower swelling ratios (1.4% at 25°C and 7.0% at 80°C), higher water retention (water diffusion coefficient = 9.8 × 10?6 cm2/s), and a lower methanol permeability coefficient (3.6 × 10?8 cm2/s) than the pristine SPEEK membrane. Although the proton conductivity of the blend membranes decreased, a higher selectivity (ratio of the proton conductivity to the methanol permeability) was obtained than that of the pristine SPEEK membrane. The results showed that the SPEEK/TMBP/PN blend membranes could have potential use as proton‐exchange membranes in direct methanol fuel cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The ethylenediamine-modified graphite oxide (EGO)-doped sulfonated poly (arylene ether ketone) (SPEEK) composite membranes have been prepared and developed for fuel cell applications in the present work. The base-modified EGO improves the dispersion of inorganic nanosheet in the polymer matrix and enhances proton conductivity by creating continuous conduction pathways. Furthermore, the methanol barrier property also be enhanced due to the nanosheet block the methanol-transport channels. EGO-filled membranes display improved dimensional stability, proton conductivity, and ethanol permeability than those using SPEEK control and graphite oxide (GO)-filled membranes. In the direct methanol fuel cells (DMFCs), the SPEEK/EGO-1.5 membrane displays the highest current density of 395.9 mA/cm2 at 60°C, which is 1.6- and 1.4-fold higher than that of SPEEK (254.0 mA/cm2) and SPEEK/GO membrane (292.6 mA/cm2).  相似文献   

18.
Sulfonated poly(ether ether ketone) (SPEEK)/clay hybrid membranes were prepared using three types of commercially available clays, the sodium montmorillonite (IC), hydrophobic organo‐clay with long alkyl chains (OC), and organo‐clay with carboxylic acid end groups (HC). It was found that the SPEEK/HC hybrid membranes achieved the best clay dispersion, with the exfoliation of the clay nano‐platelets when the filler loading was < 10 wt%. The incorporation of the carboxylic acid groups in clay layers also improved the connectivity between the ionic clusters in the membrane, resulting in higher proton conductivity without compromising the dimensional stability of membranes. The selectivity higher than the pristine SPEEK membranes was obtained for the SPEEK/HC hybrid membranes at low filler loading (<10 wt%), with higher proton conductivity and similar methanol permeability. POLYM. COMPOS., 37:2632–2638, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
孙媛媛  屈树国  李建隆 《化工进展》2016,35(9):2850-2860
Nafion膜具有优良的化学稳定性和导电性能,但是它成本高,高温下几乎不导电。本文回顾了Nafion替代膜之一——磺化聚醚醚酮(SPEEK)膜及SPEEK/离子液体(IL)复合膜的研究进展。介绍了SPEEK制备的两种方法:直接磺化法和磺化单体聚合法,其中直接磺化法工艺简单,但磺化度(DS)≤1.0,反应较难控制;磺化单体聚合法DS可控,但工艺复杂,原料有毒。简述了温度、反应时间、原料配比、磺化单体种类、制膜工艺及溶剂对SPEEK膜性能的影响:直接磺化法中DS与温度成负相关,与反应时间成正相关,与原料配比关系不大;磺化单体聚合法中DS受磺化单体的种类和氟酮与磺化氟酮的比例影响较大。着重介绍了SPEEK/咪唑离子液体复合膜和SPEEK/季铵盐离子液体复合膜的研究现状及应用于质子交换膜燃料电池(PEMFC)时存在的问题。最后对SPEEK/IL复合膜未来的研究方向进行了展望,即解决燃料电池运行过程中复合膜中离子液体流失及与Pt基催化剂相容性等关键问题,以提高PEMFC的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号