首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
王超  王开云  凌亮 《机械》2021,48(7):1-7
当前快捷货运研发技术日益成熟,开行快捷货运列车势在必行,与传统货车相比,快捷货运时速要求更高,电力机车的参数优化愈加必要.基于车辆动力学理论,采用仿真软件SIMPACK建立机车动力学模型,对抗蛇行减振器的节点刚度与阻尼特性进行优化研究.结果表明:抗蛇行减振器的节点刚度最优值为20 MN/m,当节点刚度高于此值时,轮轨横向力与磨耗指数均呈明显增加趋势.磨耗指数有效值始终随抗蛇行减振器阻尼的增大而降低,抗蛇行减振器的最佳阻尼特性为:当卸荷速度为0.01 m/s、卸荷力为15.6 kN时,机车轮轨横向力与磨耗指数达到相对最优状态.  相似文献   

2.
基于SIMPACK建立某高速列车动力学模型,主要从橡胶节点刚度、卸荷速度、卸荷力等方面分析了抗蛇行减振器对列车的动力学性能影响,并对各性能参数进行优化选择,同时,从实验角度研究了油液温度对减振器阻尼特性影响。分析结果表明:油温对减振器阻尼特性影响很大;随着卸荷速度的增加,车辆系统动力学性能有所恶化;随着卸荷力的增加,车辆系统动力学性能有所改善;橡胶节点刚度对车辆动力学性能影响与卸荷速度选取值有关。对橡胶节点刚度优化选取在5~10 MN/m范围内变动,卸荷速度选取为0.01 m/s,卸荷力选取为12 k N,此时,车辆动力学性能可以达到最优范围。  相似文献   

3.
基于Maxwell模型推导出二系横向减振器和抗蛇行减振器的动态刚度和阻尼等非线性特性,对其分别进行温变特性和动静态特性试验,并基于车辆动力学仿真得出抗蛇行减振器参数对蛇行运动稳定性和运行平稳性的影响规律.结果表明:温变特性试验中的示功图、阻尼偏差率等数据验证了减振器基本参数符合设计要求;减振器动态特性与加载频率和位移幅值相关.针对某高速列车,提高抗蛇行减振器串联刚度或提高其卸荷力,可改善构架蛇行运动稳定性和行车的平稳性、舒适性,但提高其卸荷速度却起到反作用,一般需要取最优值范围.  相似文献   

4.
为了研究抗蛇行减振器油液温度对其动态特性和整车动力学性能的影响,对我国某高速动车组抗蛇行减振器进行了试验和动力学仿真分析。试验结果表明,在油液正常工作温度范围内,减振器吸收的能量、减振器动态阻尼及动态刚度随油液温度的降低而增加;而当油液温度超出抗蛇行减振器油液正常工作范围时,减振器吸收的能量、减振器动态阻尼及动态刚度随油液温度降低而降低。仿真结果表明,在油液正常工作温度范围内,蛇行临界速度随油液温度的降低而增大,而当油液温度超出正常工作温度范围时,蛇行临界速度随温度降低而降低,油液温度对车辆平稳性、安全性影响并不明显。  相似文献   

5.
《机械》2015,(7)
分析了广泛应用于动车组车辆上的抗蛇行减振器的工作原理,将抗蛇行减振器的力学特征抽象为弹簧、阻尼单元,在Maxwell等效参数模型的基础上,考虑抗蛇行减振器油液阻尼的分段特性,同时考虑橡胶节点刚度和油液刚度,建立液压减振器的分段线性模型。在此基础上,求解抗蛇行减振器的动态阻尼与动态刚度。同时,针对应用在动车组上的某抗蛇行减振器进行动态特性试验,得到减振器的动态阻尼和动态刚度曲线。最后,将分段线性模型的计算结果与两种线性阻尼的Maxwell模型计算结果、试验结果进行对比,验证了模型的准确性。  相似文献   

6.
基于多体动力学理论及某型动车组的拓扑结构关系,利用SIMPACK建立了17体、50自由度的某型动车组单节车模型,仿真分析了一系垂向减振器阻尼、二系垂向减振器阻尼和抗蛇行减振器失效对其运行平稳性的影响。研究结果表明,随着一系垂向减振器阻尼的增大,其垂向平稳性逐渐变好,达到最优值后再逐渐变差,即优化一系垂向阻尼可以改善运行平稳性;随着二系垂向减振器阻尼的增大,其垂向平稳性变差,二系垂向阻尼显著影响运行平稳性。为了使单节车运行舒适性指标达到2级,在3个抗蛇行减振器失效工况下动车组可以在200km/h速度范围内平稳运行,在2个抗蛇行减振器失效工况下动车组可以在250 km/h速度范围内平稳运行。  相似文献   

7.
利用流体建模仿真软件AMESim和多体动力学分析软件SIMPACK分别建立抗蛇行减振器和高速车辆的仿真模型,通过联合仿真比较抗蛇行减振器阻尼分别采用F—v实时特性曲线和等效线性阻尼时车辆的动力学性能,并对比分析车辆在抗蛇行减振器失效、车轮磨耗后车辆的运动稳定性。计算结果表明:采用F—v实时特性曲线时车辆的临界速度高于采用等效线性阻尼的临界速度,且运行平稳性也更好,但二者对车辆的曲线通过安全性的影响不大;减振器失效时,车辆的蛇行运动失稳临界速度显著降低。  相似文献   

8.
基于动力学软件SIMPACK仿真分析了我国某高速列车二系空簧横向刚度对车辆动力学性能影响,并对二系空簧横向刚度进行了优化分析。仿真结果表明:车辆临界速度随二系空簧横向刚度增加有所增加;车辆横向稳定性、乘坐舒适性随二系空簧横向刚度增加有所恶化,垂向平稳性受其影响不大;轮轴横向力、脱轨系数、磨耗指数随二系空簧横向刚度增加变化不大,轮轨垂向力、轮重减载率随二系空簧横向刚度增加略有下降。该高速列车二系空簧横向刚度可以在0.1~0.2 MN/mm范围内进行选取,此时,车辆动力学性能在最优范围内。  相似文献   

9.
为了研究低温状态下高速动车组的蛇行稳定性,对我国某高速动车组的转臂定位节点和抗蛇行减振器分别进行了试验和仿真分析。试验结果表明,在正常工作温度范围内,温度越低,转臂定位节点的动态刚度与动态阻尼越大。在-50~20℃范围内,随着温度的降低,抗蛇行减振器动态刚度逐渐增加,温度越低,减振器动态刚度变化越明显;卸荷速度前,温度越低,动态阻尼越大;卸荷速度后,温度越低,动态阻尼越小;温度越低,动态阻尼变化越显著。仿真结果表明,随着温度的降低,车辆运行的蛇行临界速度先增大后减小,但是始终高于设计时速,说明温度的变化不会使列车失稳。  相似文献   

10.
为提升高速列车的线路运行适应性,设计基于抗蛇行减振器的模型预测控制(MPC)方法,实现基于减振器阻尼值实时调节的车辆蛇行运动稳定性控制。建立考虑线性轮轨接触关系的整车横向7自由度简化动力学模型;减振器考虑为理想Maxwell模型,但阻尼系数实时可调;基于模型预测控制理论设计主动抗蛇行减振器,建立目标函数及约束条件,求解最优阻尼系数;仿真分析主动控制条件的蛇行运动稳定性和运行平稳性以及目标函数对控制效果的影响。结果表明:与被动悬挂相比,采用MPC主动抗蛇行减振器能够有效抑制车辆的蛇行运动,使车辆的临界速度提升30%以上。  相似文献   

11.
以出口的某型平车作为分析对象,基于Simpack动力学软件建立动力学模型,在不同的抗菱刚度下,分别对空车和重车的新轮和磨耗轮4种工况进行仿真计算,分析其对平车的动力学性能的影响规律。研究结果表明:抗菱刚度对空车新轮的蛇行运动临界速度影响较小,其他3种工况的蛇行运动临界速度总体上呈现出阶梯状的增长,其中对重车新轮的蛇行运动临界速度影响最大。当抗菱刚度低于1.5 MN·m/rad时,磨耗轮的平稳性较差,尤其是空车磨耗轮的横向平稳性。抗菱刚度对轮重减载率指标和脱轨系数指标的影响很小,抗菱刚度对轮轴横向力指标有很大的影响。  相似文献   

12.
减振器的主要功能是提供阻尼力以衰减和抑制车辆系统振动,对高速动车组动力性能有十分重要的影响。既有研究主要将减振器处理为阻尼力以研究车辆系统动力性能,极少从动力学和结构可靠性角度关注减振器自身承受的载荷。制作某型高速动车组转向架抗蛇行减振器、轴箱减振器、二系横向和垂向减振器测力元件,在大同-西安高速线路上测试并获得该型动车组运行过程中四种减振器载荷引起的应变信号。对测试数据进行处理和分析,获得高速动车组运行工况下四种减振器载荷的时间历程,分析减振器载荷的时域和频域特征。采用雨流计数法统计减振器载荷峰谷值和频次,获得不同速度等级下载荷分布。结果表明,高速动车组抗蛇行减振器载荷最大、二系横向减振器载荷最小。轴箱减振器相对速度最大、二系横向减振器相对速度最小。减振器载荷总体上呈正态分布,而且一般有列车运行速度越高减振器载荷越大。列车正线行驶时曲线半径对轴箱减振器、二系垂向减振器以及二系横向减振器载荷影响不明显,列车速度和线路小半径曲线对抗蛇行减振器载荷影响明显。  相似文献   

13.
主要从橡胶节点刚度、油温、安装间隙、倾斜角度等方面对减振器阻尼特性影响进行分析,并基于SIMPACK建立我国某高速列车的动力学模型,仿真分析了橡胶节点刚度对车辆动力学性能影响,分析结果表明:橡胶节点刚度越大,吸收的能量越多,但是节点刚度过大,车辆动力学性能则会有所恶化,故应选取一个最优范围;油温越高,减振器吸收的能量有所下降;由于减振器长期服役带来的安装间隙对阻尼特性影响很大,间隙越大减振性能越差;倾斜角度对减振器吸收的能量几乎没什么影响,对动态特性有一定影响。因此,在减振器试验过程中,应当考虑油温、安装刚度以及安装间隙带来的影响,即减振器要注意散热,反力座刚度要足够大且无安装间隙。  相似文献   

14.
介绍了抗蛇行减振器的简化模型——Maxwell模型。基于蛇形运动的稳定性理论,推导了带抗蛇行减振器的刚性转向架的线性临界速度解析表达式。利用表达式研究了不同等效锥度下抗蛇行减振器串联刚度和结构阻尼对临界速度的影响。研究结果表明:在相同锥度下,结构阻尼和串联刚度存在最佳匹配关系,小结构阻尼应配合小串联刚度,较大结构阻尼应配合较大串联刚度,大结构阻尼应配合大串联刚度;在满足结构阻尼和串联刚度匹配的大范围下,不同等效锥度应匹配不同的串联刚度和结构阻尼,小锥度应匹配较小的串联刚度和较大的结构阻尼,大锥度应匹配较大的串联刚度和较小的结构阻尼。  相似文献   

15.
王业  曾京 《机械》2019,46(7)
橡胶弹性元件的动态特性通常与激励振幅和频率以及温度相关,针对某型号高速动车组的一系定位节点,在常温下进行了相关试验,得出了该橡胶定位节点在不同激励频率与不同激励振幅下的动态特性,在试验数据的基础上,建立了高速列车一系转臂定位节点的非线性动力学模型,并分析了其对于轮轨横向力与构架横向稳定性的影响,结果表明动车组转臂橡胶节点的非线性刚度在常温下与频率关联较弱,与振幅关联较强;采用非线性橡胶节点的动车组模型其轮轨横向力高于线性模型,其构架横向振动剧烈程度高于线性模型。  相似文献   

16.
为了提高车辆动力学计算机仿真精度,研究抗蛇行减振器力学模型及其对车辆动力学性能的影响,基于可压缩流体的压力?流量特性建立了我国某高速动车组抗蛇行减振器非线性力学模型,并对其进行了试验和动力学仿真分析。结果表明:相比传统分段线性模型,抗蛇行减振器非线性力学模型能够同时体现黏性阻尼力和油液被压缩而产生的回复力,仿真计算结果与试验结果吻合良好;基于抗蛇行减振器非线性力学模型计算的临界速度会随踏面等效锥度的增加而先增大后减小,计算的横向平稳性指标较高,且随速度增加而增加的趋势更显著。研究表明,抗蛇行减振器非线性力学模型能够有效提高动力学仿真精度,对车辆的蛇行运动稳定性和横向平稳性有较大影响,但对垂向平稳性和曲线通过安全性的影响较小。  相似文献   

17.
分析了新、旧抗蛇行减振器以及抗蛇行减振器在不同安装长度时的动态特性与静态特性。研究结果表明:抗蛇行减振器在服役120万公里后,其静态特性变化不是很明显。其动态阻尼、动态刚度下降相对较明显,动态阻尼下降约为10%,动态刚度下降约为15%。随着幅值的增加,动态阻尼、动态刚度减小率均逐渐减小,动态刚度减小率没有动态阻尼变化明显。抗蛇行减振器不同安装长度时静态特性没有太大变化,动态刚度、动态阻尼随着安装长度的增加总体呈减小趋势,减振器安装长度每增加40 mm,动态刚度平均约减小5%~7%,动态阻尼平均减小约为2%~8%。因为它们静态特性都没有明显变化,故不能再根据Maxwell模型来分析其对车辆动力学性能影响,体现了Maxwell模型局限性。  相似文献   

18.
基于轮轨匹配的车辆横向稳定性分析   总被引:8,自引:0,他引:8  
为使车辆横向稳定仿真分析更好地体现其特殊的自激振动意义,提出一种基于轮轨匹配的横向稳定性分析新方法.与轮对几何接触相比,自由轮对接触过程(接触几何/力学)可以得到更加精确的匹配计算结果.结合地铁车辆实例,运用临界速度线性分析方法给出车辆临界速度随等效锥度的变化曲线.若轮轨匹配合理,临界速度的线性结果与非线性仿真验证相吻合.临界速度的非线性影响主要取决于轮轨匹配,当轮对蛇行稳定极限环很小时其非线性影响不可忽视.除轮轨匹配外,利用临界速度线性分析方法给出轮对质量、一系悬架纵向和横向刚度、横向减振器阻尼3个参数对临界速度的敏感影响,并提出地铁车辆在既有线路提速的优化方案.  相似文献   

19.
传统的高速列车半主动控制的控制对象是列车车体振动,往往没有考虑列车轮对的振动。轮对振动影响列车脱轨系数和轮对磨耗,关系到列车安全性和经济性。为了改善列车轮轨动力学性能,对一系横向减振器进行建模与仿真研究,通过设定不同的一系横向阻尼值,分析一系横向减振器对列车动力学性能的影响规律,并将天棚阻尼控制算法应用在一系横向半主动控制上,与被动悬挂情况进行对比。仿真结果表明,在350km/h速度级下,采用一系横向半主动控制比无一系横向减振器,列车的平稳性指标、脱轨系数和轮轨磨耗均得到改善,整体动力学性能得到提高。  相似文献   

20.
低温环境对高速动车组动力学性能影响显著,需要掌握低温下的车辆参数变化范围,针对-40℃或极低温工况鲜有研究。基于悬挂元件低温特性试验结果,建立高寒动车组非线性动力学仿真模型,并将常温环境下的动力学仿真结果与线路试验结果进行对比验证;将车辆系统悬挂参数、轮轨匹配、轮轨界面参数考虑为正态随机分布,采用拉丁超立方采样方法组合得到300种计算工况,仿真研究高寒动车组在-40℃低温环境运行时的动力学性能。300 km/h速度条件下,车辆运行稳定性和安全性能满足标准要求,但新镟修车轮在直线运行工况下的横向平稳性较常温环境下差,主要是由于车辆发生了横向低频晃动;低温引起橡胶元件和减振器的刚度和阻尼增大,导致在与车体上心滚摆接近的频率范围内,前后转向架同向蛇行运动的阻尼比降低,引发以车体滚摆为主的横向晃动,因此高寒动车组需要注意预防新镟轮后的车体晃动现象。为低温环境下的高速动车组悬挂参数使用范围和动力学性能设计提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号