首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化学镀Ni-Cu-P合金工艺及性能研究   总被引:1,自引:0,他引:1  
研究了化学镀Ni-Cu-P合金镀液组成及操作条件对镀层厚度及硬度的影响.筛选出了体系的最佳工艺条件,获得了82.391%Ni-10.298%P-5.297%Cu的合金镀层,其硬度在450~500HV之间.X射线衍射表明:Ni-Cu-P合金镀层在镀态下为非晶态结构,但镀层经400℃和600℃热处理后,其结晶区域有Ni3P、Cu3P等特征的衍射峰出现,表明镀层为晶态结构.此外,研究表明:镀层厚度随硫酸镍浓度、次亚磷酸钠浓度、镀液温度及pH值的升高而增加,随硫酸铜浓度、络合剂浓度的升高而降低.  相似文献   

2.
采用化学镀工艺在不锈钢表面获得了Ni-Cr-P合金镀层。研究了Ni-Cr-P非晶态合金膜随热处理温度升高,其结构以及显微硬度和耐蚀性的变化规律,并对变化的原因进行了分析。结果表明,镀态Ni-Cr-P为非晶态镀层,200℃热处理开始晶化,到400℃时Ni3P晶化比较完全,800℃时Ni3P完全分解,生成含Ni、Cr、Fe的合金膜的Cr2Ni3和FeNi2P相。其显微硬度随热处理温度升高而升高,500~600℃之间显微硬度略有下降,600~700℃又随着热处理温度的升高而略有升高,700℃后显微硬度略有下降;合金膜的耐腐性在热处理温度200~400℃间变化较小,500℃热处理后其耐腐蚀性下降厉害,600~700℃随着热处理温度的升高其耐腐蚀性又略有升高,800℃后由于Ni3P的分解其耐腐蚀性又急剧下降。  相似文献   

3.
论述了刷镀Ni-Cu-P/Al2O3在金属零件表面形成非晶态刷镀层的工艺方法和刷镀液的配方;分析了镀层中Al2O3含量对形成非晶态刷镀层的影响;分析了热处理温度对刷镀层硬度的影响,当热处理温度在360℃时,刷镀层硬度最高,耐磨性最好。非晶态刷镀具有工艺简单、刷镀层硬度高、耐磨性和耐蚀性好的特点。  相似文献   

4.
采用直接化学复合镀法在ZL102合金表面制备了Ni-P-SiC复合镀层,经不同温度热处理后,利用XRD、DSC、扫描电镜等对复合镀层的结构和形貌进行了分析,并对镀层的结合力、显微硬度、耐蚀性及耐磨性等进行了测试。结果表明:镀态镀层由晶态相和非晶态相组成,热处理过程中非晶态相向晶态转化;镀层的显微硬度随热处理温度的升高呈先升后降的趋势,在400℃时达到最大值1395.28 HV;镀层经400℃×1 h热处理后,镀层中的镍和磷原子向铝基体中扩散,复合镀层与基体结合良好,耐磨性和耐蚀性较基体有很大程度的改善,但热处理后镀层的耐蚀性与镀态的相比有所降低。  相似文献   

5.
利用化学镀方法在NdFeB磁性材料表面制备了非晶态Ni-Cu-P合金镀层,并运用X射线衍射(XRD)研究了不同温度热处理后(200、300、350、380、400、500℃)非晶态镀层结构的变化。结果表明:随着加热温度从200℃增加到500℃,镀层结构由镀态下的非晶态结构逐渐转变为晶态结构,晶态转变温度为350~380℃;镀层硬度由非晶态的486.9 HV0.1增加为晶态的766.4 HV0.1。  相似文献   

6.
利用XRD研究了化学镀Ni-P合金镀层经不同温度热处理后的结构变化。结果表明,镀态Ni-P呈非晶态;350 ℃时镀层由非晶态向晶态转化;热处理温度为400 ℃时,析出Ni3P稳定相。镀态及热处理条件下的阻垢和耐蚀性实验结果表明,随着热处理温度的升高,CaCO3中Ca的原子分数先降低后升高,300 ℃热处理降低了镀层的内应力及氢脆,使镀层的组织更加致密,镀层的阻垢和耐蚀性得到改善。  相似文献   

7.
电沉积Ni-Mo-P合金镀层的组织结构与耐蚀性   总被引:2,自引:0,他引:2  
王雷  姜秉元 《腐蚀与防护》2003,24(6):246-248
用扫描电镜、透射电镜和失重法研究了电沉积Ni-Mo-P合金镀层的表面形貌、组织结构和耐蚀性能。结果表明,Ni-Mo-P合金的非晶态镀层,经过不同温度热处理后,镀层结构以非晶态→混晶态→结晶态的顺序变化,镀层的硬度和耐蚀性也因此发生了相应的变化。  相似文献   

8.
采用化学镀技术在碳钢表面制备Ni-P和Ni-Cu-P镀层,通过电化学方法评定Ni-P和Ni-Cu-P镀层在人造海水中的耐蚀性。结果表明:非晶Ni-P和Ni-Cu-P、纳米晶Ni-Cu-P镀层的腐蚀电流密度均随着人造海水温度升高而增大,而阻抗值则减小;共沉积Cu有利于改善非晶Ni-P镀层的耐蚀性,但改善效果随着人造海水温度的升高而减小;400℃热处理可显著改善Ni-Cu-P镀层在人造海水中的耐蚀性,在80℃的人造海水中,热处理Ni-Cu-P镀层的腐蚀电流密度较镀态Ni-Cu-P镀层的低一个数量级。  相似文献   

9.
为提高镀层的热稳定性及硬度,研究了Ni-W-P非晶合金随热处理温度升高,其结构以及耐蚀性能的变化规律,并对变化的原因进行了分析。结果表明,镀态Ni-W-P合金在300℃以下温度热处理后,仍为非晶态;随温度升高开始晶化,到500℃晶化过程结束;其腐蚀速率随温度升高增大,于500℃达最大值,而后降低。  相似文献   

10.
通过熔盐电沉积方法,获取了非晶态Al-Mn合金镀层,对非晶态Al-Mn合金镀层的组成、表面状态、硬度和耐蚀性进行了研究.结果表明,镀层的结构、耐蚀性及硬度与镀层含Mn量有关.非晶态Al-Mn合金镀层具有很高的硬度和优良的耐蚀性.  相似文献   

11.
研究了pH值、金属离子摩尔浓度比和热处理温度对NdFeB磁体表面化学镀Ni-Co-P合金镀层结构的影响.结果表明:在给定试验条件下,随pH值和金属离子摩尔浓度比的增加,镀层结构由非晶态结构逐渐变为微晶结构;当镀层在400 ℃进行热处理后,镀层发生结构转变,由非晶态结构转变为晶态,析出了亚稳相Ni12P5.随热处理温度的继续升高,亚稳相Ni12P5转变为稳定的Ni3P相.  相似文献   

12.
采用化学镀技术在A356合金基体上制备了Ni-P-纳米WC化学复合镀层,并选用真空热处理的方式,对制备的Ni-P-纳米WC纳米复合镀层分别在200、300、400和500℃下进行镀后处理,与镀态下镀层性能进行对比,研究不同热处理温度对Ni-P-纳米WC复合镀层形貌、成分、物相、硬度和耐腐蚀性的影响。结果表明:试验制备的Ni-P-纳米WC复合镀层成分均匀、组织致密,镀层结构呈现非晶态;镀态下,复合镀层硬度达到917.8 HV0.1,约为基体的6倍;在3.5%NaCl溶液中的极化曲线结果显示,复合镀层自腐蚀电流密度比A356合金提高了2个数量级,起到较好的耐腐蚀效果。热处理后镀层发生晶态转变,且随热处理温度的升高,镀层晶化程度提高,400℃以上时镀层完全表现为晶态;热处理态镀层中析出Ni_3P相,镀层硬度随温度的升高呈现先升高后降低的趋势,400℃热处理镀层硬度达到1353.6 HV0.1;与镀态下相比,热处理镀层在3.5%Na Cl溶液中的耐腐蚀性下降,但是仍然表现出较好的耐腐蚀效果。  相似文献   

13.
采用化学镀的方法在2024铝合金表面制备了Ni-W-P/TiO2复合镀层,基于差示扫描量热法(DSC)结果,确定了复合镀层热处理温度范围为350~550℃。利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)、维氏硬度测试仪、滑动磨损试验机和电化学工作站等研究了热处理温度对Ni-W-P/TiO2复合镀层的形貌、组织结构、耐磨性与耐蚀性的影响。结果表明:随着热处理温度的升高,Ni-W-P/TiO2复合镀层表面变得平整且致密,但热处理温度超过450℃时,镀层表面晶粒变得粗大;截面形貌观察发现,复合镀层与基体结合良好,无明显裂纹;随着热处理温度升高,Ni-W-P/TiO2复合镀层由非晶态结构向晶态结构转变,在450℃热处理后镀层析出Ni3P相,此时镀层的显微硬度最大(849.1 HV0.1),平均摩擦系数最小(0.069),磨损速率最低(0.138 mg/min);在400℃热处理后镀层的耐蚀性最好,高于400℃热处理后,镀层的耐蚀性有所下降。  相似文献   

14.
采用X射线衍射(XRD)、干滑动磨损、电化学分析等方法研究了低温退火(100~500℃)对电刷镀方法制备的纳米晶Ni-Co合金镀层的组织结构、耐磨性、耐蚀性的影响.结果表明:随着退火温度的升高,纳米晶Ni-44.16%Co合金镀层的晶粒尺寸逐渐增大,从原始晶粒尺寸12.7 nm长大到500℃时的微米晶尺寸.合金镀层的显微硬度随退火温度的升高而提高,300℃退火后达到最大值,以后随加热温度的升高而急剧降低.纳米晶Ni-44.16%Co合金镀层的耐磨性300℃退火后最好,500℃以后急剧下降,与镀层显微硬度的变化密切相关.浸泡试验与电化学分析均表明纳米晶Ni-44.16%Co合金镀层在300℃退火后的耐蚀性优于其他温度,300℃以上退火耐蚀性随温度升高而下降.  相似文献   

15.
论述了刷镀 Ni- Cu- P/ Al2 O3在金属零件表面形成非晶态刷镀层的工艺方法和刷镀液的配方 ;分析了镀层中 Al2 O3含量对形成非晶态刷镀层的影响 ;分析了热处理温度对刷镀层硬度的影响 ,当热处理温度在 36 0℃时 ,刷镀层硬度最高 ,耐磨性最好。非晶态刷镀具有工艺简单、刷镀层硬度高、耐磨性和耐蚀性好的特点  相似文献   

16.
论述了采用电刷镀技术在20CrMnTi合金结构钢表面制备Ni-P-SiC复合镀层的工艺条件,通过扫描电镜、X-射线衍射仪等技术研究了热处理温度对Ni-P-SiC复合镀层组织结构的影响。结果表明:随回火温度的升高,复合镀层发生了由非晶态向晶态的转变,析出与Ni相共格的第二相Ni3P,镀层的硬度增加,400℃达到最大值;回火温度继续高,由于晶粒的粗化,复合镀层的硬度逐渐下降。  相似文献   

17.
化学镀Ni-P二元合金镀层的耐蚀性与其组织结构、表面形态密切相关。实验获得磷质量分数11.54%的高磷镀层,镀态下为非晶态结构。300℃热处理后开始晶化,并在400℃热处理时完全晶化,镀层由非晶态的Ni相转变为Ni3P+Ni混合稳定相。用原子力显微镜(AFM)对镀层表面观察发现,不同热处理下的镀层合金表面形态差别很大。形态的差异对镀层合金的耐蚀性有影响,特别是400℃热处理后,由于表面纳米植被的覆盖使得此时镀层合金的耐蚀性最优异。  相似文献   

18.
为提高镀件的耐蚀性,采用化学沉积的方法在Q235B钢样沉积Ni-Cu-P镀层。利用维氏硬度仪、SEM、EDS及Autolab电化学工作站分析了Cu~(2+)浓度对Ni-Cu-P合金镀层成分、微观形貌及耐蚀性的影响。结果表明:CuSO_4浓度在0. 4 g/L左右时,Ni-Cu-P合金镀层的耐蚀性最好。  相似文献   

19.
化学镀镍-铜-磷三元合金层的制备及其组织与性能研究   总被引:3,自引:0,他引:3  
对45钢表面用化学镀方法镀镍-铜-磷三元合金层,采用金相显微镜、扫描电镜能谱分析、X射线衍射和显微硬度计研究了镀层的组织、相结构和性能.结果表明,600℃×1 h热处理后,镀层由Ni基固溶体、Ni3P和Cu3P化合物相组成;镀层的硬度随着热处理温度升高先增大后降低,400℃热处理后的硬度最高;在相同的模拟酸性腐蚀条件下,Ni-Cu-P三元合金化学镀层与1Cr18Ni9不锈钢相比,具有更加良好的耐腐蚀性能.  相似文献   

20.
《铸造技术》2017,(3):577-580
采用化学镀的方法在HRB400岩土锚杆钢表面制备了Ni-P镀层,研究了热处理温度对化学镀层物相、表面形貌、显微硬度、耐磨性能和耐腐蚀性能的影响。结果表明,随着热处理温度的升高,镀层中的Ni3P数量有所增多,且镀层结构不断从非晶态转变为混晶结构、最后转变为比较稳定的晶态结构;表面化学镀可有效提高表面显微硬度;随着热处理温度升高,镀层的显微硬度逐渐增加;当热处理温度为400℃时镀层的耐磨性能和耐腐蚀性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号