首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
以尼龙(PA)6、聚碳酸酯(PC)为主要原料并加入聚烯烃弹性体(POE)及扩链剂(HDI),经反应挤出制备了一种新型PA6/PC合金。探讨了HDI对PA6/PC合金的增韧机理,对合金性能与多重网络结构的关系进行了分析,并探讨了不同增韧剂对合金力学性能的影响。结果表明,这种新型增韧合金具有优异的力学性能。  相似文献   

2.
采用平板动态流变仪研究了聚碳酸酯/尼龙6(PC/PA6)共混体系在设定温度下的动态流变性能,并探讨了增容剂用量、剪切频率等因素对高聚物动态复合黏度、动态储能模量及损耗因子等动态流变参数的影响。结果表明,PA6的加入明显改善了PC的加工流动性,3种增容剂的加入增强了分子间作用力和分子链之间的缠结,提高了界面黏合力。  相似文献   

3.
PC/PA6共混体系的耐溶剂性及其结晶行为的研究   总被引:1,自引:1,他引:0  
聚碳酸酯(PC)易于应力开裂,耐化学腐蚀性差,尼龙(PA6)的加入可以改善PC的耐药性、耐应力开裂性。本实验以二甲苯为溶剂,对空白PC以及改性后的PC/PA6共混物进行浸泡,对其浸泡前后的物理机械性能以及样品宏观表面情况进行观察比较和分析,探讨了POE-g-MAH、PE-g-GMA两种不同相容剂及其用量和添加剂滑石粉对PC/PA6共混体系物理机械性能、耐溶剂性能、结晶性能等方面的影响。结果表明,PA6的加入可明显改善PC的耐二甲苯溶剂性能,滑石粉能进一步改善其耐溶剂性能,但添加量过多会致使冲击强度下降而限制材料的应用;POE-g- MAH、滑石粉较PE-g-GMA更有利于PA6的结晶,这可能与其异相成核或反应增容的作用有关;POE-g-MAH可明显地提高PC/PA6共混体系的相容性,且5%为较合理的添加量。  相似文献   

4.
为了提高膨胀型阻燃体系聚磷酸胺(APP)/尼龙6(PA6)对苯乙烯-丁二烯-丙烯腈共聚物(ABS)的阻燃效果,采用极限氧指数法、垂直燃烧法、热失重和扫描电镜分析探讨了协效剂氧化锌、4A分子筛、氧化铝和次磷酸铝对ABS/APP/PA6膨胀型阻燃复合物的协效阻燃效应.结果表明,协效剂的加入显著改善了ABS/APP/PA6体系的阻燃性能,当2%的氧化锌,4A分子筛和次磷酸铝加入时,阻燃体系的氧指数从28.3%分别提高到31.2%,30.8%和33.5%,UL94测定均为V-0级.热失重分析表明,添加剂的加入提高了阻燃体系的热稳定性和高温残炭率.SEM形貌分析显示,协效剂的加入能促进阻燃体系在燃烧后形成更加均匀、致密的炭层结构.  相似文献   

5.
采用熔融共混法制备了不同碳纤维/热膨胀石墨(CF/EG)比例的尼龙6/碳纤维/热膨胀石墨(PA6/CF/EG)导电复合材料并研究其性能。结果表明,CF的加入能显著提高复合材料的力学性能;而随着EG含量的提高,复合材料的导电性能和导热性能显著提高,但力学性能在一定程度上得到降低。当CF质量分数为20%时,复合材料具有最优的力学性能,当EG质量分数为20%时,复合材料体积电导率可显著提高至0.262 S/m,热导率可达1.3379W/(m·K)。  相似文献   

6.
以十六烷基三甲基溴化铵为有机插层剂对无机蒙脱土进行处理制备有机蒙脱土,采用原位聚合法制备尼龙-6/OMMT纳米复合材料,并在聚合过程中添加聚丁二烯合成PA-6/PB/OMMT纳米复合物.用FT-IR,XRD等对复合材料进行表征,并进行力学性能分析.实验表明,PB的加入能相对提高尼龙-6/OMMT的冲击强度,在PB含量为3%时,复合材料的拉伸性能和冲击性能较好.  相似文献   

7.
通过改变共混加料顺序,并使用极性有机化蒙脱土,制备了尼龙/EVA-g-MAH/蒙脱土共混材料。研究了蒙脱土种类、乙烯-醋酸乙烯共聚物(EVA)接枝状况以及共混加料顺序对尼龙6/EVA/蒙脱土共混材料力学性能和热学性能的影响。结果表明,尼龙6中加入极性较强的有机化蒙脱土,并使用EVA接枝马来酸酐(MAH),对尼龙6冲击韧性的改性效果明显。采用母料法制备PA6/EVA-g-MAH/有机化蒙脱土材料,可使蒙脱土有效分散到尼龙6相或EVA相中时,增韧效果最好,拉伸和弯曲强度的损失最小。  相似文献   

8.
MC尼龙6/TiO2原位纳米复合材料的制备及表征   总被引:10,自引:0,他引:10  
利用阴离子原位聚合法制备了铸型尼龙6(MC尼龙6)/TiO2原位纳米复合材料,并对其结构与性能进行了表征。透射电子显微镜观察表明,TiO2以纳米级均匀分散于MC尼龙6中,其含量小于1份时近乎单分散,大于1份时则开始团聚。差示扫描量热法和X射线衍射法分析结果表明,纳米TiO2对MC尼龙6的结晶起到了异相成核作用,提高了MC尼龙6的结晶温度,但不改变MC尼龙6的α晶型结构;退火处理结果表明,高温退火或加入纳米TiO2,都有利于MC尼龙6基体中α晶型的生成,加快γ晶向α晶的转变。热重分析和力学性能测试表明,纳米TiO2提高了复合材料的热稳定性,其拉伸强度、冲击强度等也得到了不同程度的提高。  相似文献   

9.
尼龙6/粘土纳米复合材料的性能   总被引:6,自引:1,他引:5  
对尼龙6/粘土纳米复合材料(PA6CN)的力学性能、结晶性能、流变性能、热稳定性、阻隔性能、阻燃性能、各向异性和可纺性进行了综述。加入粘土后,基体尼龙6的晶型变为γ型,改善了尼龙6的力学性能,提高了热变形温度,降低了吸水率,改善了气体阻隔性和材料的阻燃性,拓宽了复合材料的应用范围。  相似文献   

10.
聚碳酸酯/尼龙1010耐溶剂合金体系的性能研究   总被引:1,自引:1,他引:0  
对聚碳酸酯(PC)以及聚碳酸酯/尼龙1010(PC/PA1010)共混物用二甲苯进行浸泡,对其浸泡前后的物理机械性能以及样晶宏观表面情况进行观察比较和分析;并探讨了苯乙烯马来酸酐无规共聚物(SMA)、聚乙烯接枝甲基丙烯酸缩水甘油酯(PE-g-GMA)两种相容剂对PC/PA1010共混体系物理机械性能、耐溶剂性能、结晶性能以及动态流变性能等方面的影响.结果发现:尼龙1010的加入改善了PC的加工流动性和耐化学溶剂性,相容剂PE-g-MAH有效地改善了PC与PA1010之间的相容性,使得体系在浸泡溶剂前后均能保持较佳的物理机械性能.  相似文献   

11.
The research focused on the PA66/PC/silicone rubber composites. By adding silicone rubber as a toughener, the composites were prepared via dynamic vulcanization. The morphology and properties of the composites were characterized by FTIR, TEM, SEM, XRD, etc. The FTIR spectrum of the composites presented an increase of the 1730, 1240, and 1450 cm?1 that can be due to the C?O interaction and the presence of the O? CO? O group, and this fact can mean the formation of the PA66–PC copolymer. The crosslinking of silicone rubber in the PA66/PC matrix formed the net‐like structure like semi‐IPN, which is propitious to enhance the interaction between PA66 matrix and PC and in further makes the PC particles embed in PA66 matrix closely. Novel composites are gained with outstanding mechanical properties and high temperature resistance, so the combine toughening by silicone rubber and PC is an ideal toughening system owing to the synergistic effect. In addition, the PA66/PC/silicone rubber/OMMT composite exhibits better flexile strength and flexile modulus without weakening other mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
利用PA6及玻璃纤维(GF)作原料,采用环氧树脂作为界面相容剂,研究了环氧树脂和加工工艺对PA6复合材料力学性能的影响。结果表明:加入不同环氧树脂,采用一步法制备的PA6复合材料性能差异很大;采用二步法制备的PA6复合材料性能差异较小,环氧树脂与PA6发生反应,能明显提高基体PA6的力学性能GFPA。  相似文献   

13.
在PP/PA6基体中分别添加两种无机纳米粒子(SiO2,TiO2)和5%的接枝POE作为相容剂。采用三种不同的共混工艺制备PP/PA6/纳米粒子复合材料,并对其性能进行了对比分析。通过力学性能测试和SEM照片观测分析了影响复合材料力学性能的因素。结果表明:分步法的制备工艺能够明显提高PP/纳米粒子复合材料的综合力学性能,改善分散相的相容性。并且研究发现:在PP/PA6中添加相同质量分数的纳米TiO2的综合力学性能要优于纳米SiO2。  相似文献   

14.
In this study, polyamide 6 (PA6) with various contents of halloysite nanotubes (HNTs) and melamine cyanurate (MCA) were prepared by a twin‐screw extruder. The flame retardant and physical properties of PA6 composites were examined. X‐ray diffraction (XRD) patterns of PA6/HNTs and PA6/MCA/HNTs composites showed that HNTs as a nanoscale material dispersed in PA6 whether with MCA or not. Thermo gravimetric analyzer (TGA) results showed the presence of HNTs can improve thermal stability of PA6 and PA6/MCA composites. The incorporation of HNTs seemed to result the increase of crystallinity of PA6 and PA6/MCA composites from the differential scanning calorimetry (DSC) results. The combined of HNTs and MCA that leads to further improvements limiting oxygen index (LOI) value of PA6 to 31.7% exerted a positive effect on flame retardancy of PA6. What's more, some mechanical enhancements of PA6 with adding of HNTs were achieved and HNTs also made the tensile properties of PA6/MCA composites improved. POLYM. COMPOS., 36:892–896, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
尼龙6(PA6)虽有很多优良的性能,但由于它具有强极性的特点,使其吸水率高,尺寸稳定性和电性能差.同时,由于PA6材料在干态和低温下脆性大、冲击强度差,导致材料使用寿命缩短,这些缺陷都极大地限制了它的应用.本研究采用液晶聚合物(TLCP)对PA6进行改性,使其在加工过程中形成原位复合材料,同时为了改善液晶聚合物与PA6...  相似文献   

16.
用十二烷基磺酸钠(SDS)将Na基蒙脱土(MMT)改性成有机蒙脱土(OMMT),采用原位聚合法制备了聚丙烯酸丁酯(PBA)/OMMT,并将其按适当比例添加到尼龙6(PA6)中。通过红外光谱仪、差示扫描量热仪等表征了OMMT、PBA/OMMT的结构,并检测了PA6/PBA/OMMT复合材料的力学性能。结果表明:添加5%的PBA/OMMT后,PA6/PBA/OMMT复合材料的拉伸强度提高了23.1%,缺口冲击强度的降低幅度有所减缓。  相似文献   

17.
Nylon6 (PA6)/Ethylene-(vinyl acetate) (EVA)/carbon black (CB) composites with different electrical conductivity were prepared in an internal mixer. The factors influencing the electrical conductivity of the ternary composites were investigated, including mixing mode, mixing time and mass ratio of PA6 and EVA, and so on. Among three kinds of PA6/EVA/CB composites, including ones prepared by directly mixing (composites A), EVA and CB were mixed prior to melt-compounding with PA6 (composites B) and PA6 and CB were mixed prior to melt-compounding with EVA (composites C), the mixing time only significantly influenced the electrical conductivity of composites A. Good conductivity of the composites could be realized because the distance between CB particles became closer with the increasing of mixing time. However, the mixing time has no effect on the electrical properties of the composites B and the composites C, due to there were no CB particles migrated phenomenon happened. Scanning electron microscopy (SEM) was used to assess the fracture surface morphologies and the dispersion of the CB particles. The results showed that the dispersion of the CB particles significantly affects the electrical conductivity of the composites. Based on the study of the influence of various mass ratios of EVA and PA6 on the morphologies and electrical properties of PA6/EVA composites filled with 10 phr (parts per hundred resins) CB particles, we suggested that the mass ratio of EVA and PA6 affected the volume resistivity of the ternary composites significantly. In addition, the composites were almost insulation when the mass ratios of EVA and PA6 were 80/20 and 70/30, while the composites became conductivity with the mass ratio of EVA and PA6 higher than 60/40. The PA6/EVA/CB composites which CB particles locate at the interface of EVA and PA6 have the lowest volume resistivity when the mass ratio of two components was 60/40.  相似文献   

18.
采用半芳香族耐高温尼龙聚对苯二甲酸/间苯二甲酸己二胺(PA6T/6I)为树脂基体,铜铬氧化物为激光镭射助剂,制备了PA6T/6I基的激光直接成型(LDS)功能材料。采用扫描电子显微镜对激光镭射助剂分散状态及LDS功能材料模塑器件的表面形貌能进行了表征,使用热失重分析仪、差示扫描量热仪对LDS功能材料的热失重行为、熔融结晶性能进行了表征,研究了激光镭射助剂添加量对LDS功能材料的力学性能、热稳定性、化学镀性能的影响,同时研究了PA6T/6I熔融结晶性能和注塑模具温度对于模塑器件表面、外观的影响。结果表明,偶联剂的添加有利于改善激光镭射助剂在PA6T/6I树脂基体中的分散,其中环氧类的偶联剂KBM–403处理后的LDS镭射助剂分散效果最佳。激光镭射助剂添加量的增加,会造成LDS功能材料拉伸强度、弯曲强度、冲击强度及初始分解温度降低。激光镭射助剂添加量在8%时,预镀铜上镀时间和镀层覆盖时间最短,化学镀效果最佳。当注塑模具温度为175℃时,玻纤增强PA6T/6I基LDS功能材料模塑器件的外观最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号