首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
电压源换流器高压直流输电技术最新研究进展   总被引:11,自引:7,他引:11  
介绍了以电压源换流器、全控型电力电子器件和脉宽调制技术为核心的新型高压直流输电技术,详细阐述了电压源换流器高压直流输电系统的工作原理和关键技术,分析了其技术特点和应用领域,回顾了国外的最新研究进展和工程应用现状,以及在我国的研究动态和应用于风电场并网的首个电压源换流器高压直流输电示范工程建设情况。相关研究表明,电压源换相高压直流输电技术在电力系统中有着广阔的应用前景,是未来输电技术的一个重要发展方向。  相似文献   

2.
基于CSC和VSC的混合多端直流输电系统及其仿真   总被引:8,自引:3,他引:5  
研究了一种新型混合多端直流输电系统,其换流器可以分男由电压源换流器(VSC)和电流源换流器(CSC)构成,各个换流器之间以并联方式连接.为验证该直流输电模式的有效性和可行性,建立了一个混合三端直流输电系统仿真模型,包含1个电流源整流器、1个电流源逆变器和1个电压源双向换流器,并分别设计了2种控制策略.当采用第1种控制策略,即电流源整流器采用定电流控制,电流源逆变器采用定电流控制,电压源双向换流器采用定直流电压控制和定交流电压控制时,混合多端直流输电系统在启动、稳态运行、直流和交流故障等情况下具有良好的运行特性,不失为一种有效的直流输电模式,能够综合利用常规直流输电和轻型直流输电各自的优点,有效扩展常规直流输电系统的适用范围.  相似文献   

3.
为了研究验证基于电网换相换流器-电压源换流器(line commutated converter-voltage source converter,LCCVSC)多端混合直流输电系统的启停控制策略,搭建了完整双极的LCC-VSC三端混合直流输电动模平台,在LCC(整流)-VSC(逆变)、VSC(整流)-LCC(逆变)以及VSC(整流或逆变)接入常规LCC直流输电系统等混合直流输电运行模式下,对系统的启动和停止等关键控制策略以及一端投退对多端混合直流输电网络的影响进行了实验研究,并根据实验结果对混合直流系统的主要控制功能和特点进行了分析。实验结果表明所提出的控制策略能够实现混合直流输电系统的平稳启停和在线投退。  相似文献   

4.
搭建了一种混合直流输电物理动模平台,其整流站采用串联的电网换相换流器(LCC),逆变站采用半桥和全桥子模块混合的模块化多电平换流器(FHMMC)。为提高系统容量,逆变侧的FHMMC换流器采用高低阀组串联的拓扑结构。对不同全桥子模块配比下高低阀组的在线投退、直流故障穿越等关键技术进行了研究,并在所设计的动模平台上进行了实验验证。实验结果表明所提出的控制策略能够实现混合直流输电系统的高低阀组在线投退及故障自清除,为多种混合直流输电以及新型电压源换流器的工程应用提供了论证平台。  相似文献   

5.
基于电网换相换流器和电压源换流器串联的混合直流换流器在克服交流故障时的换相失败和直流故障时的重启动具有优势。分析了该混合直流换流器运行方式、控制策略、电压源换流器保护原理、抵御换相失败原理和直流线路重启过程,认为由该混合直流换流器组成的高压直流输电系统,可克服传统直流和柔性直流输电的主要缺点。当逆变侧的交流系统发生故障时,电压源换流器可提供电压支撑来抑制直流电流增加,缓解电网换相换流器换相失败效应。当直流线路发生故障时,逆变侧电网换相换流器可阻断电压源换流器产生的故障电流,具备直流线路故障重启能力。另外,电压源换流器还为电网换相换流器提供无功功率,从而减少换流站无功设备配置。  相似文献   

6.
高压直流输电系统换流器技术综述   总被引:1,自引:0,他引:1  
作为高压直流输电核心设备的换流器容量巨大、可控性强,对可靠性的要求很高。传统晶闸管换流器容量很大,但投资大、谐波严重。电压源换流器能弥补传统晶闸管换流器的部分缺点,其发展十分迅速。为了进一步推动换流器技术在高压直流输电系统中的改进研究和应用,针对传统晶闸管换流器、每极2组12脉动换流器、电容换相换流器以及电压源换流器等适合于高压直流输电的换流器,在详细介绍这些换流器的拓扑结构、基本工作原理、控制策略的基础上,对其技术特点和应用领域进行了评述。研究结果表明:长距离大容量高压直流输电仍然适合采用传统晶闸管换流器;电压源换流器在HVDC中有广泛的应用前景,是未来高压直流输电技术的重要发展方向。  相似文献   

7.
VSC-HVDC技术是指采用全控型功率半导体器件的电压源换流器的直流输电技术,致力于研究基于VSC换流器的高压直流输电以及三端直流输电系统的运行与控制问题.建立了VSC换流器静态模型并设计了PI控制器,分析了适用于VSC-MTDC的电压下降和主从式控制两种运行模式的特点,并由此设计了一种与有源网络以及无源网络相连的并联...  相似文献   

8.
一种适用于风电场送出的混合型高压直流输电系统拓扑   总被引:3,自引:1,他引:2  
混合型高压直流输电系统两端分别由传统电网换相换流器(LCC)和电压源换流器(VSC)构成,是一种新型拓扑,可以合理结合二者的优点,具有广泛的应用前景。其运行特性、控制策略和故障特性等方面不同于LCC高压直流输电系统和VSC高压直流输电系统,有必要对其进行研究分析。文中研究了整流侧采用VSC、逆变侧采用LCC的混合型高压直流输电系统,设计了不同的控制策略,在电磁暂态仿真软件PSCAD/EMTDC下进行了正常和故障情况下的仿真,对比采用不同控制策略时对系统换相失败的影响和故障恢复特性,选择了适用于此类系统的最优控制策略。  相似文献   

9.
通过对dq0坐标系下电压源换流器模型的分析,得到了电压源换流器增广被控对象的状态空间方程。利用H¥控制理论,设计了基于电压源换流器的高压直流输电系统的定直流电压、定直流功率、定无功功率控制器。根据MATLAB建立的仿真模型,对上述控制器进行了仿真实验。仿真结果表明,所设计的H¥控制器具有良好的控制性能,达到了设计要求。  相似文献   

10.
通过对dqO坐标系下电压源换流器模犁的分析,得到了电压源换流器增广被控对象的状态空间方程.利用H∞控制理论,设计了基于电压源换流器的高压直流输电系统的定直流电压、定直流功率、定无功功率控制器.根据MATLAB建立的仿真模型,对上述控制器进行了仿真实验.仿真结果表明,所设计的H∞控制器具有良好的控制性能,达到了设计要求.  相似文献   

11.
提出了一种适用于区域大规模风电并网的六端柔性直流输电系统,设计了该系统的协调控制策略,即送端电压源型换流器(VSC)采用交流电压控制、受端VSC采用直流电压下垂控制。以直流网络损耗最小作为优化目标,计算了系统稳态运行点。通过在PSCAD/EMTDC平台上搭建仿真算例,验证了所提出的系统控制策略可以自动跟踪风电功率波动并协调受端功率分配。通过设计系统启动和风功率波动及交流侧故障和换流器停运的仿真算例,验证了该六端柔性直流输电系统具有良好的功率调控能力和运行灵活性。  相似文献   

12.
逆变侧采用电网换相换流器(LCC)和模块化多电平换流器(MMC)串联组成的特高压混合级联多端直流输电系统,为特高压直流输电提供了一种更为经济、灵活、快捷的输电方式。基于现有直流电网的协调控制策略,文中对受端MMC阀组之间的协调控制策略进行了深入的分析研究,并考虑了5种协调控制策略。然后,在PSCAD/EMTDC中,对上述5种策略遭受不同故障的响应特性分别进行仿真,故障包括送端交流故障、直流线路故障、受端LCC交流故障、受端MMC1交流故障及MMC1紧急闭锁退出。最后,基于仿真结果,对上述5种协调控制策略的适用性进行了对比分析。仿真结果表明:策略1和策略3遭受各种故障均能有效穿越;策略2、策略4和策略5在遭受直流线路故障时均发生不同程度的功率倒转,需要采取措施抑制。  相似文献   

13.
针对受端由电网换相换流器(LCC)和电压源换流器(VSC)级联的混合直流输电系统中VSC在交流故障穿越时子模块过压的问题,文中提出在受端VSC直流侧安装耗能设备以抑制VSC子模块过压的方法,对比分析了基于直流斩波耗能电阻、泄流晶闸管和可控避雷器3种耗能设备的交流故障穿越原理及策略。基于PSCAD/EMTDC仿真平台搭建了包含工程实际控制保护主机程序的受端混联LCC-VSC特高压直流仿真模型,对比分析了3种耗能设备的交流系统故障穿越特性,结果表明在受端VSC直流侧安装耗能设备可以有效抑制子模块过压,实现交流故障可靠穿越。其中可控避雷器方案具有控制原理简单、可靠性高等优点,更适用于受端混联LCC-VSC特高压直流输电系统。  相似文献   

14.
针对大规模风电外送可靠性问题,提出风火打捆经混合三端直流输电并网系统拓扑结构并设计各换流器的控制策略。混合三端直流输电系统的发电端由两个自然换相(LCC)整流器组成,受端由一个电压源型逆变器(VSC)与外电网相连。风电场群侧LCC1换流器采用定有功功率的控制策略,可以追踪最大功率;火电厂侧LCC2换流器采用定直流电流控制策略,可以平抑风功率波动。受端换流站控制器VSC采用定直流电压和定无功功率控制策略,能有效应对换流站侧交流系统短路故障和负荷突变等工况。仿真结果表明所提控制方案的有效性。这种输电模式能够综合利用常规直流输电和轻型直流输电各自的优点,有效扩展常规风火打捆直流输电系统的适用范围。  相似文献   

15.
混合直流输电系统常会出现不同类型的故障,传统控制方法的故障处理时间过长,对此,研究基于换相换流器(LCC)和模块化多电平换流器(MMC)的混合直流输电系统优化控制方法。根据系统结构特征绘制拓扑结构图,建立LCC数学模型和MMC数学模型;利用三角星型接法和星型接法控制整流侧直流电压,实现整流侧LCC的优化控制;利用电压源逆变器(VSC)双闭环控制器对逆变侧MMC进行优化控制;通过从系统直流侧直接充电,减少中间电流转接过程,利用MMC数学模型计算电压调制波,实现均衡电压,控制系统稳定运行。仿真结果表明,应用所提方法可以在5 s内控制整流站交流故障,面对直流线路单极故障问题,所提方法在5 s内快速反应,将LCC和MMC的电流控制在稳定的区间内,同时对三组电流的控制均有较好的效果,能够实现混合直流输电系统优化控制,快速解决输电系统故障。  相似文献   

16.
混合级联型多落点直流输电系统整流侧为换相换流器(LCC),逆变侧为LCC和模块化多电平换流器(MMC)组串联的拓扑结构,可以有效抑制换相失败,具备大容量功率传输的优势。建立了单极混合级联型多落点直流输电系统,针对系统中LCC送受端交流故障引发的直流功率降低、逆变侧换相失败以及受端低端MMC子系统产生的功率反向问题进行了研究,提出了一种提升系统稳定性的协调控制策略。该策略通过改变逆变侧直流电压来维持交流系统故障后功率传输的稳定性,可防止受端MMC功率反送。PSCAD/EMTDC仿真结果验证了所提协调控制策略的有效性。  相似文献   

17.
针对受端多落点级联型混合直流输电系统发生交直流故障时,电流分配不平衡导致的功率反送、系统稳定性降低等问题开展研究,并提出改善系统稳定性的协调控制策略.该策略在发生故障时根据线路传输功率、逆变侧电网换相型换流器(LCC)输出功率以及采用定直流电压控制的模块化多电平换流器(MMC)稳态输出功率,对MMC的有功功率指令值进行调控,避免采用定直流电压控制的MMC由逆变改为整流,防止受端交流侧功率大范围转移现象的发生.同时在故障清除后仍可缓解系统恢复过程波动较大的问题,使系统能够快速平稳地恢复至额定运行状态.基于PSCAD/EMTDC建立仿真模型,仿真结果验证了所提协调控制策略可有效减小电压和功率的波动,系统在交、直流典型故障下均能实现平稳过渡,提升了受端系统的稳定性.  相似文献   

18.
由模块化多电平换流器(modular multi-level converter,MMC)和电网换相换流器(line commutated converter,LCC)构成的混合直流输电系统中,LCC换相失败严重影响系统的安全稳定运行。文中首先分析MMC-LCC混合直流输电系统换相失败时的电流特性以及交直流电压特性。其次,考虑调制比对半桥型MMC的影响,采用MMC电压改善控制策略拓展电压调制比的可行域。然后,提出MMC电压分段控制策略,根据交流电压跌落程度的不同,分别设计直流电压参考值的调节方法,优化混合直流输电系统电压控制逻辑,实现MMC电压在正常运行与故障情况下的有效切换。最后,在MATLAB/Simulink中搭建MMC-LCC混合直流输电系统模型,对交流电压不同跌落程度进行仿真,结果表明所提控制策略能在实现故障穿越的同时提高直流电压控制精度,增强系统稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号