首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
汽轮发电机组在临界转速时转子的振幅急剧增大,造成动静之间碰摩,给机组带来一定的危害。转子临界转速的计算方法多种,但是往往计算结果与实际误差较大。通过伯德图法、频谱分析法和李莎茹图法进行转子临界转速测量,实验结果显示3种方法所测结果基本一致,并确定选取伯德图法测量转子临界转速较为准确;通过改变转子上轮盘的质量和位置变化,利用伯德图进行转子临界转速测量,得出随着质量的增大转子临界转速会减小,在偏离转子中心位置较远处影响不大;相同质量情况下,轮盘偏离转子中心越远,转子临界转速增加得越快。该试验结论可指导工程实践,对现场临界转速的计算、仿真和实验起到一定的借鉴作用。  相似文献   

2.
搭建了最高转速为8 000 r·min-1的转子振动测试实验台,使其可以实现单双跨转子动平衡和临界转速的振动测试。用幅频图法测量转子模型的临界转速,实验测得转子的转速—振幅图,由于副临界转速的存在,所以不能确定振幅波峰是转子的临界转速还是副临界转速。为了区分副临界转速和临界转速,利用ANSYS软件对转子进行模态模拟计算,判定了转子的临界转速和副临界转速。用影响系数法将不平衡转子进行实验配平,通过动平衡前后振动波形图、幅频特性图和轴心轨迹图的比较,证明了动平衡实验取得了良好的效果。  相似文献   

3.
介绍了MPC555在柴油转子发动机燃油喷射系统中的应用。主要介绍了整个电控系统的核心ECU的设计原理和方法及外围电路和控制策略及各种传感器的A/D转换、喷油器控制、高压泵控制喷油压力控制和CAN总线接口电路。系统具有集成度高,可靠性好的特点,初步试验验证所控制的转子机单缸转速和功率分别达到4400r/min和25kW。  相似文献   

4.
转子动力学计算前处理功能软件开发   总被引:1,自引:0,他引:1  
在传统应用传递矩阵法进行转子动力学计算的软件基础上,开发前处理软件的工作,解决传递矩阵法输入数据和转子分段的繁琐而又专业性强的工作,使转子临界转速、失稳转速和振动模态的计算软件的使用更为方便,而前处理软件主要解决了转子设计图纸的自动提取和转子的自动分段的功能。  相似文献   

5.
针对600MW汽轮发电机组转子-轴承系统,建立了系统运动方程和转子模型,采用有限元分析软件ANSYS进行模态分析,计算汽轮机转子的固有频率和临界转速,从而避免工作转速接近临界转速产生共振.最后通过临界转速和振型图分析转子的特性.  相似文献   

6.
建立双跨转子系统模型,利用Ansys软件进行转子临界转速计算,并与理论计算结果比较,以保证结果的正确性。用有限元软件分析研究了支承变化、轮盘变化以及联轴器变化3种影响因素对双跨转子系统临界转速的影响。结果分析表明:在转子上增大支承刚度会增大双跨转子的临界转速,而在支承位置的偏移中,两段转子的临界转速表现出不同的变化趋势。增大转子上的轮盘质量,双跨转子的临界转速减小,偏移转子上的轮盘位置,双跨转子的临界转速增大。增大联轴器的刚度,双跨转子的临界转速增大,联轴器的位置处于中心时,临界转速最大,向两边偏移,临界转速减小。为汽轮机转子系统设计和处理汽轮机运行过程中由于结构数据变化引起临界转速改变提供参考。  相似文献   

7.
周桐  徐健学 《动力工程》2001,21(2):1099-1104,1179
在大型旋转机械中,由于疲劳等因素会使转子中产生许多裂纹。通过大量的数值模拟,分析了包含横向裂纹时,汽轮机转了Jeffcott模型的非线性动力学行为;对比了不同过临界转速时所采取的加速度方案和裂纹法向与不平衡质量间夹角对转子横向振动产生的不同影响;重点分析了裂纹转子在过临界转速时的频特性和最大共振峰随裂纹深度的深化规;并讨论了在亚临界转速时,裂纹转子的时频响应特性;提出了3种的诊断转子裂纹的简便方法。  相似文献   

8.
为了分析某500 MW汽轮机机组中压转子在经过临界转速过程中的安全性,对该机组实际运行中发生振动最大的中压转子进行了振动特性计算与分析.采用自己开发的转子动力学软件计算得到中压转子的第一、第二阶临界转速,分别求得转子在第一阶临界转速和3 000 r/min转速下的最大弯曲静挠度,通过静挠度分析程序计算得到不同转速下对应的等效重力加速度,最后在Ansys中通过施加等效重力加速度模拟了不同转速下转子的不平衡离心力,并施加此离心力载荷来计算分析不同转速下转子的弯曲等效应力分布.结果表明:第一阶临界转速和3 000 r/min转速下的等效重力加速度分别为10 m/s2和1 m/s2;计算得到的各种工况下的最大弯曲等效应力均远小于该材料的屈服极限.  相似文献   

9.
转子径向碰摩故障的非线性特征研究   总被引:1,自引:2,他引:1  
考虑到碰摩转子动静接触时的摩擦力与塑性冲击现象,引入了转子径向碰摩的非线性Goldman-Muzynska模型。运动方程的数值解表明,在2.2倍临界转速以上,转子振动出现明显的分岔和混沌现象,转子升速试验也说明,碰摩故障的典型特征是在较高的转速下出现严格的1/2,1/3等分数倍频,应用上述理论并结合提纯轴心转迹等分析方法,成功 捕捉到一起汽轮机转子的碰摩故障,为今后其它机械设备同类故障的确诊提供了可靠的依据。  相似文献   

10.
汽轮发电机组转子转动惯量测取探讨   总被引:4,自引:0,他引:4  
冯伟忠 《动力工程》1998,18(5):11-15,6
介绍了汽轮发电机转子转动惯量的测取原理和方法,就转子的涡动现象对转速测量的干扰进行了理论分析,并提出了解决措施。  相似文献   

11.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

12.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

13.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

14.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

15.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

16.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

17.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

18.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

19.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

20.
The thermal decomposition of limestone has been selected as a model reaction for developing and testing an atmospheric open solar reactor. The reactor consists of a cyclone gas/particle separator which has been modified to let the concentrated solar energy enter through a windowless aperture. The reacting particles are directly exposed to the solar irradiation. Experimentation with a 60 kW reactor prototype was conducted at PSI's 90m2 parabolic solar concentrator, in a continuous mode of operation. A counter-current flow heat exchanger was employed to preheat the reactants. Eighty five percent degree of calcination was obtained for cement raw material and 15% of the solar input was converted into chemical energy (enthalpy).The technical feasibility of the solar thermal decomposition of limestone was experimentally demonstrated. The use of solar energy as a source for high-temperature process heat offers the potential of reducing significantly the CO2 emissions from lime producing plants. Such a solar thermochemical process can find application in sunny rural areas for avoiding deforestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号