首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 161 毫秒
1.
添加Y2O3-Dy2O3的AlN陶瓷的烧结特性及显微结构   总被引:5,自引:0,他引:5  
本文探索了以自蔓延高温(SHS)法合成并经抗水化处理的AlN粉为原料,以Y2O3-Dy2O3作为助烧结剂的AlN陶瓷的烧结特性及显微结构.结果表明,晶界处存在Dy4Al2O9、Y4Al2O9、DyAlO3、Dy2O3和DyN等第二相物质,随烧结温度变化,第二相的种类、数量和分布不同,显微结构也随之变化,从而影响AlN的热导率.在1850℃下,可获得热导率为148W/m·K的AlN陶瓷.  相似文献   

2.
热压烧结TiB2陶瓷的显微结构和力学性能研究   总被引:4,自引:1,他引:3  
以Y2O3-Al2O3为烧结助剂,通过热压制备了TiB2陶瓷,研究了烧结温度,烧结时间和晶化处理对材料的显微结构和力学性能的影响。实验结果表明,随着烧结温度的升高,烧结体失重增加,其抗弯强度和断裂韧性降低,烧结时间延长,其显微结构的均匀性降低,对力学性能不利。晶粒直径对TiB2陶瓷的力学性能有重要影响,晶化处理能够导致晶界析出YAG相,从而提高TiB2陶瓷的高温抗弯强度。  相似文献   

3.
SPS制备亚微米晶氧化铝陶瓷   总被引:2,自引:0,他引:2  
以商业α-Al2O3粉体为原料, MgO为烧结助剂, 采用放电等离子烧结技术(SPS)制备亚微米晶氧化铝陶瓷. 系统研究了烧结温度、烧结助剂含量对亚微米晶氧化铝陶瓷的致密化过程及显微结构的影响. 分析结果表明, 1250℃以及0.05wt%分别是最佳的烧结温度和烧结助剂含量; 在此条件下获得的亚微米晶氧化铝陶瓷, 其相对密度达到99.8%TD(theoretical density),平均晶粒尺寸约0.68μm,显微硬度(HV5)达到20.75GPa,在3~5μm中红外范围内直线透过率超过83%. 当MgO掺杂量超过0.1wt%时, 第二相MgAl2O4形成, 引起光散射, 降低红外透过率.  相似文献   

4.
热压烧结固溶复合TiB2-NbB2陶瓷的结构与性能   总被引:1,自引:0,他引:1  
过渡金属硼化物与TiB2具有相同的晶体结构和相近的晶格常数,因此通过适当的工艺手段能够与TiB2形成固溶体.本文以NbB2作为掺加剂,通过热压烧结制备了TiB2-NbB2固溶复合陶瓷.研究了掺加剂含量对烧结材料力学性能的影响,材料的显微结构分别由EPMA、SEM和TEM测定.研究结果表明,NbB2可以部分固溶到TiB2中形成固溶体,并有助于细化TiB2晶粒,同时材料的力学性能得到提高.  相似文献   

5.
纳米晶添加氧化铝粉体的低温烧结研究   总被引:12,自引:0,他引:12  
以湿化学法制备的纳米α-Al2O3粉体作为添加剂,MgO和SiO2为烧结助剂,对商用γ-Al2O3粉体预处理后,采用无压烧结工艺,有效的降低了烧结温度.在1450℃制备了高性能的氧化铝陶瓷,并对添加α-Al2O3纳米晶的作用机理进行了研究.  相似文献   

6.
原位反应结合多孔Si3N4陶瓷的制备及其介电性能   总被引:2,自引:0,他引:2  
以氮化硅(Si3N4)和氧化铝(Al2O3)为起始原料, 利用原位反应结合技术制备Si3N4多孔陶瓷. 研究烧结温度和保温时间对Si3N4多孔陶瓷的微观结构、力学性能以及介电性能的影响. 结果表明: 烧结温度在1350℃以下, 保温时间<4h时, 随着烧结温度的升高, 保温时间的延长, 样品的强度和介电常数增大; 但条件超出这个范围, 结果刚好相反; 物相分析表明多孔陶瓷主要由Si3N4和Al2O3以及Si3N4氧化生成的SiO2(方石英)组成. 所制备的多孔Si3N4陶瓷的气孔率范围为25.34%~48.86%, 抗弯强度为34.77~127.85MPa, 介电常数为3.0~4.6, 介电损耗约为0.002.  相似文献   

7.
Al2O3添加剂对合成MgTiO3陶瓷相组成及介电性能的影响   总被引:4,自引:0,他引:4  
研究了添加剂Al2O3对MgO和TiO合成MgTiO3陶瓷烧结性、物相组成和微波介电性能的影响,XRD分析结果表明:没有添加Al2O3时,合成的MgTiO3陶瓷中只含有MgTiO3和MgTi2O5相;加入Al2O3后MgTiO3陶瓷中除了MgTiO3和MgTi2O5相外,还出现了MgAl2O4相,这是由于Al2O3和 MgO发生固相反应.MgAl2O4的出现虽然阻碍材料的致密化并导致密度下降,但是可以降低反应烧结合成MgTiO3陶瓷的相对介电常数和介电损耗.  相似文献   

8.
Al2O3含量对Al2O3/LiTaO3复合陶瓷介电性能的影响   总被引:1,自引:0,他引:1  
采用热压烧结法制备了Al2O3/LiTaO3 (ALT) 陶瓷复合材料, 研究了Al2O3不同体积含量(5vol%、10vol%、15vol%和20vol%)对LiTaO3压电陶瓷介电性能的影响. 结果表明:随着频率的增加, 不同Al2O3含量的ALT陶瓷复合材料的介电常数和介电损耗均降低, 但降低的幅度不同. 少量Al2O3(5vol%)的添加既能增大材料的介电常数同时又降低了材料的介电损耗, 但是随着Al2O3含量的继续增加, ALT陶瓷复合材料的介电常数和介电损耗都增大, 其居里温度先升高后降低. Al2O3作为第二相不但能促进LiTaO3陶瓷烧结致密,而且对ALT陶瓷复合材料的介电性能也有提高.  相似文献   

9.
原位生成棒晶增强Ti-B-C复相陶瓷的研究   总被引:6,自引:0,他引:6  
C与Ti在1800°C×35MPa×1h的烧结条件下反应生成了TiB2 棒晶,棒晶长度在10~30μm,其长径比在2~8范围.原位生成的棒晶赋予了材料具有极高的力学性能,材料的弯曲强度和断裂韧性分别为 680MPa和 12MPa·m1/2.通过 X射线衍射检测了材料的物相组成,利用扫描电镜及透射电镜观察了材料的显微结构.最后讨论了温度及金属Ti含量对棒晶TiB2的生成及发育的影响.  相似文献   

10.
添加La2O3对Mg2TiO4陶瓷的显微结构与微波介电性能的影响   总被引:1,自引:0,他引:1  
采用传统烧结工艺,制备了具有不同La2O3含量的镁钛镧陶瓷,并研究了La2O3组份对材料晶相构成、晶粒、晶界的演变、介电常数和品质因数的影响.结果表明,不含La2O3的钛酸镁陶瓷主晶相为Mg2TiO4,其平均晶粒尺寸>60μm;引入La2O3后,出现新晶相La0.66TiO2.99,材料的晶粒尺寸明显下降;随La2O3含量的增加,材料的介电常数线性增加,材料的品质因数Q在10GHz出现最大值(16558).  相似文献   

11.
TiB2/FeMo陶瓷的显微结构与力学性能   总被引:3,自引:0,他引:3  
以Fe-Mo为助烧剂,通过热压制备了TiB2陶瓷.研究了烧结温度、烧结时间对材料显微结构和力学性能的影响,分析了烧结致密化过程.实验结果表明,随着热压烧结温度升高,材料抗弯强度、洛氏硬度出现峰值,热压烧结时间延长,抗弯强度有所下降.液相烧结的重排阶段致密化速率最快.  相似文献   

12.
Al2O3/TiB2/SiCw三元复合材料的力学性能及显微结构   总被引:3,自引:0,他引:3  
以Al2O3为基体,SiC晶须和TiB2颗粒两种增韧剂,采用热压烧结工艺制备了Al2O3/TiB2/SiCw三元复合陶瓷材料。研究了热压工艺参数对材料致密度的影响和晶须含量对该复合材料的力学性能和显微结构的影响。结果表明;随晶须含量的增加,该复合材料的热压温度和保温时间需要相应的增加;晶须拔出、裂纹偏转和晶须的桥接为该复合材料的主要增韧机理;随晶须含量的增加,该材料的室温断裂韧性增加;该材料的断裂韧性随温度的升高而呈增大趋势,并且晶须含量越高,材料的高温断裂韧性增幅越大。  相似文献   

13.
以不同配比的Y2O3-Al2O3为烧结助剂, 通过添加3wt%的单分散β-Si3N4籽晶, 采用气压烧结制备了氮化硅陶瓷, 并对所得材料的相组成、密度、室温和高温力学性能及显微结构进行了研究. 结果表明: 不同烧结助剂配比的α-Si3N4粉体在1800℃保温2 h即全部转化为β-Si3N4, 且各烧结体的相对密度都达到了97%以上. 在6wt%Y2O3和4.5wt%Al2O3为烧结助剂时, 添加3wt%籽晶的样品其室温强度和1200℃高温强度分别提高了20%和16%, 断裂韧性提高了8%.  相似文献   

14.
通过调整反应体系中Ti、 C及B之间的原子摩尔比, 采用超重力下燃烧合成工艺, 制备出TiB2系列摩尔分数的TiC-TiB2复合陶瓷。利用场发射扫描电镜(FESEM)观察了复合陶瓷微观组织, 研究了TiB2成分对复合陶瓷力学性能的影响。结果表明: 随着TiB2摩尔含量增加, 陶瓷基体逐渐从TiC球晶组织转化为TiB2片晶组织, 在TiB2摩尔分数为50%时, 可获得细晶乃至超细晶TiC-TiB2复合陶瓷, 而且残留于基体上的α-Al2O3夹杂量也最低。陶瓷相对密度、 Vickers硬度与弯曲强度均在50%TiB2(摩尔分数, 下同)时呈现最大值, 而陶瓷断裂韧性则在66.7% TiB2时出现最高值。陶瓷断裂模式为TiC穿晶断裂与TiB2沿晶断裂的混合模式, 且随TiB2摩尔分数增加至66.7%, TiC穿晶断裂倾向显著减弱而TiB2沿晶断裂倾向明显增强。TiC-TiB2细晶及超细晶凝固组织的获得使TiC-50%TiB2复合陶瓷在小尺寸TiB2片晶诱发的裂纹偏转、 裂纹桥接及片晶拔出增韧机制作用下, 具有最高的弯曲强度及较高的断裂韧性。  相似文献   

15.
TiB2-TiC复相陶瓷的结构与性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
TiB2-TiC复合粉制备的TiB2-TiC复相陶瓷的相对密度达99.8%,硬度为 93.2HRA,断裂韧性为5.53MPa·m1/2。显微结构研究表明:TiB2-TiC烧结体体内的位错和残余气孔影响材料性能。复合粉烧结体晶粒尺寸细小,大小分布均匀,晶粒之间界面干净,无杂质沉积,烧结体中TiB2和TiC两相界面接合处元素B,C,Ti的含量存在梯度变化,都有利于烧结体性能提高。TiB2晶粒生长存在取向性。  相似文献   

16.
TiB2-Cu复合材料燃烧合成与二次致密化行为   总被引:2,自引:1,他引:1       下载免费PDF全文
采用燃烧合成技术制备了相对密度为90%左右的TiB2-40Cu金属-陶瓷复合材料,为了进一步提高复合材料的力学性能,研究了TiB2-40Cu金属-陶瓷高温压缩弹塑性变形行为,证明了高陶瓷体积分数下金属陶瓷在高温环境下具有一定的塑性行为。分别在1050℃、1090℃、1150℃对复合材料进行二次热压烧结,详细研究了工艺参数对TiB2-40Cu复合材料二次热压变形、组织特征及力学性能的影响。结果表明:经过二次热压后,材料的相对密度和弯曲强度有了较大幅度的提高,在1090℃时,材料的相对密度达到了96%,弯曲强度达到605.5MPa。并从宏观和微观上分析了致密化机理,认为致密化过程是多种机制共同作用的结果。   相似文献   

17.
(SiC,TiB2)/B4C复合材料的烧结机理   总被引:3,自引:2,他引:1       下载免费PDF全文
研究了在热压条件下制备 (SiC, TiB2)/ B4C复合材料的烧结机理。认为烧结助剂的加入使本体系成为液相烧结,同时粉料的微细颗粒对复合材料的烧结致密也有重要贡献。分析和测量了制取的复合材料的相组成、显微结构和力学性能。结果表明,采用B4C与Si3N4和少量SiC、TiC为原料,Al2O3+Y2O3为烧结助剂,在烧结温度1800~1880℃,压力30 MPa的热压条件下烧结反应生成了SiC、TiB2和少量的BN,制取了(SiC, TiB2)/B4C复合材料。所形成的晶体显微结构为层片状。制得的试样的硬度、抗弯强度和断裂韧性分别可达HRA88.6、540 MPa和5.6 MPa·m1/2。   相似文献   

18.
以两种不同配比Y2O3/Al2O3 (A, 2:3; B, 3:1, 总量15 wt%)为烧结助剂, 通过添加不同质量分数的SiC粉体,反应烧结制备了高强度的氮化硅/碳化硅复相陶瓷。并对材料的相组成、相对密度、显微结构和力学性能进行了分析。结果表明: 在1700℃保温2 h情况下, 烧结助剂A 与B对应的样品中α-Si3N4相全部转化为β-Si3N4; 添加5wt% SiC, 烧结助剂A对应样品的相对密度达到最大值94.8%, 且抗弯强度为521.8 MPa, 相对于不添加SiC样品的抗弯强度(338.7 MPa)提高了约54.1%。SiC能有效改善氮化硅基陶瓷力学性能, 且Si3N4/SiC复相陶瓷断裂以沿晶断裂方式为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号