首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以丙烯腈为原料自制聚丙烯腈(PAN)粉末,静电纺丝法制备PAN纳米纤维,采用溶胶-凝胶法负载TiO2,制备TiO2/PAN碳化纳米纤维膜.通过SEM、DG-DTG及元素分析等方法对纳米纤维进行表征.研究结果表明,用PAN质量分数为3%的纺丝液进行静电纺丝,在预氧化温度280℃及碳化温度550℃条件下可制得直径100~1...  相似文献   

2.
通过静电纺丝和高温碳化制备了CNTs/La~(3+)共掺杂TiO_2纳米纤维,研究了碳化温度对纳米纤维光催化性能的影响。通过SEM、BET、FTIR、XRD和UV-Vis对纳米纤维的形貌、晶型、成分和光催化性能进行了观察和分析。研究结果表明,碳化对纳米纤维的表面形貌有显著的影响;随着碳化温度的升高,纳米纤维的比表面积随之增加,碳化温度对纳米纤维中TiO_2的晶型也有显著影响;当碳化温度为500℃时,纳米纤维光催化性能最佳。  相似文献   

3.
以聚丙烯腈(PAN)和醋酸锌(Zn(CH3COO)2.2H2O)为溶质,N-N二甲基甲酰胺(DMF)为溶剂,采用静电纺丝法成功制备PAN/醋酸锌纳米纤维毡,并探讨醋酸锌含量(相对于PAN)对纳米纤维毡形貌和直径的影响。对PAN/醋酸锌纳米纤维毡进行预氧化、活化、碳化处理,制备得到碳纳米多孔纤维,并对其得率、孔径分布、比表面积及吸附性能进行研究。实验结果显示:预氧化温度的升高使碳纳米多孔纤维的吸附指标先增后减;在600℃~1 000℃的碳化温度范围内,碳化温度的升高使碳纳米多孔纤维的吸附性能均呈现上升趋势,且在1 000℃时达到最大。  相似文献   

4.
利用PAN与氯化铁的共混溶液进行静电纺丝,经预氧化和碳化得到了掺杂和未掺杂铁的碳纳米纤维。利用SEM和EDS表征了纤维形貌和组成,测试了其力学性能,并研究了杂化碳纳米纤维对Cu~(2+)吸附性能的影响。结果表明,随着纺丝液中铁含量的增加,纤维的平均直径和断裂强度逐渐减小。掺杂铁的碳纳米纤维与未掺杂的碳纳米纤维相比,其对Cu~(2+)的吸附性能显著提高。  相似文献   

5.
利用静电纺丝技术制备PAN/竹炭粉纳米纤维膜,探讨了竹炭粉含量对纳米纤维膜微观形貌与纤维直径的影响,以及复合纳米纤维膜的过滤性能。研究结果表明:在相同工艺参数条件下,加入质量分数为2.0%的竹炭粉时,所得纳米纤维膜中纤维的直径较小(397.26nm),且纤维直径分布均匀。以纯PAN纳米纤维膜+PAN/竹炭粉纳米纤维膜+纯PAN纳米纤维膜结构作为芯层,聚丙烯(PP)非织造布作为外层制成的过滤材料,其流量大、阻力低,过滤效率高达99.85%。  相似文献   

6.
为获得力学性能较好的聚丙烯腈(PAN)基实心和多孔碳纳米纤维,以自制相对分子质量30万的PAN为原料,利用静电纺丝技术制备了PAN和PAN/聚甲基丙烯酸甲酯纳米纤维,经预氧化、碳化后分别获得了新型纳米纤维。利用扫描电镜观测了纳米纤维和碳纳米纤维的表面形态,并对纳米纤维和碳纳米纤维的直径分布进行了表征。结果表明:相对分子质量为30万的PAN适宜纺丝质量分数为6%,PAN纳米纤维的平均直径为1 242 nm。在PAN纺丝液中加入PMMA后,纳米纤维的平均直径下降至519 nm,且直径分布变窄;预氧化过程中施加张力可以使碳纳米纤维保持较好的纤维形状;碳化处理后的PAN和PAN/PMMA纳米纤维的直径都明显减小,前者减小为683 nm,后者为374 nm;扫描电镜照片显示,加入PMMA后PAN碳纳米纤维呈多孔结构。  相似文献   

7.
将石墨烯(GR)纳米颗粒掺杂到聚丙烯腈(PAN)纺丝溶液中,利用静电纺丝技术制备石墨烯/聚丙烯腈(GR/PAN)复合纳米纤维膜。研究PAN质量分数、GR用量、纺丝电压及接收距离对GR/PAN复合纳米纤维膜形貌和过滤性能的影响,发现最优纺丝工艺参数为PAN质量分数14.0%、GR用量1.5%、纺丝电压26 kV、接收距离14 cm、注射速度1 mL/h。此最优纺丝工艺参数制备的GR/PAN复合纳米纤维膜的过滤效率为98.86%,过滤阻力为110.30 Pa。  相似文献   

8.
为提高聚丙烯腈(PAN)纤维膜的压电性能,将硝酸钠(NaNO3)掺杂到PAN中,利用静电纺丝技术制备了PAN/NaNO3纳米纤维膜。探究了NaNO3用量以及纺丝速度对静电纺PAN纤维膜压电性能的影响。通过扫描电子显微镜、红外光谱仪、X射线衍射仪、驻极体非织造压电性能测试系统以及压电测试仪对PAN/NaNO3纤维膜的表面形貌、构象和压电性能进行表征与测试。结果表明:将NaNO3掺杂到PAN中会导致纤维膜的平面锯齿构象含量增加,晶面间距减小,进而影响PAN纤维膜的压电性能;当NaNO3质量分数为0.9%、纺丝速度为1 000 mm/s时,纤维膜的压电性能明显提高,此时PAN/NaNO3纤维膜中平面锯齿构象含量最多,晶面间距最小,与未掺杂NaNO3的PAN纤维膜相比,此PAN纤维膜压电电压和电流分别提高了40%和174.53%。  相似文献   

9.
为研究炭化温度对碳纳米纤维电极性能的影响,采用静电纺丝法制备了聚丙烯腈/线性酚醛树脂(PAN/PF)纳米纤维,然后经不同温度炭化处理得到不同结构与性能的碳纳米纤维,并制备成电极材料.对碳纳米纤维的表面形貌、比表面积、孔结构、石墨化程度和元素含量,以及碳纳米纤维电极的电化学性能进行测试与表征.结果表明:PAN/PF碳纳米...  相似文献   

10.
为获得比常规静电纺丝纤维直径更细的聚丙烯腈(PAN)纳米纤维,采用复合静电纺丝方法制备了聚丙烯腈/醋酸丁酸纤维素(PAN/CAB)复合纳米纤维,再溶解掉复合纳米纤维中的CAB组分,得到超细PAN纳米纤维并对其进行氨基化改性后用于吸附直接红23(DR23)染料。研究了PAN和CAB的混合比例、纺丝溶液质量分数和纺丝液挤出速度3个因素对所得PAN 纳米纤维直径的影响,并比较了常规静电纺和复合静电纺制备出的PAN纳米纤维改性后的染料吸附量。实验结果表明:该方法制得的PAN纳米纤维的平均直径在50~80 nm范围内,其中当PAN和CAB的质量比为15:85、纺丝溶液质量分数为15%、纺丝液挤出速度为1.5 mL/h、纺丝电压为10 kV、接收距离为20 cm时,得到的PAN纳米纤维的平均直径为50 nm;改性后纳米纤维对DR 23的平衡吸附量达833mg/g。  相似文献   

11.
以β-环糊精(β-CD)、聚丙烯腈(PAN)为原料,N-N二甲基甲酰胺(DMF)为溶剂,改变溶液中PAN以及β-CD的含量,通过静电纺丝技术成功制备了表面光滑无珠结且粗细均匀的PAN/CD纳米纤维毡。通过红外光谱(ATRFTIR)和XRD对纳米纤维进行表征,结果显示β-CD固定在纳米纤维中并能保留自身的特殊结构。通过可见分光、原子火焰吸收光度计分别研究不同PAN、CD含量的纳米纤维毡对有机染料亚甲基蓝(MB)、无机重金属Cu2+的吸附性能。结果显示,PAN为10%(质量体积比)、β-CD为60%(质量比)时制备的纳米纤维毡对MB和Cu2+的吸附率分别高达85.1%和59.5%。  相似文献   

12.
为了获得性能优异的碳纳米纤维负极材料并对材料的碳化工艺进行探讨,利用静电纺丝技术和高温碳化制备一维碳纳米纤维负极材料.对获得的碳纳米纤维的形貌、化学成分结构及电化学性能进行测试分析,得到优化的预氧化和碳化条件.结果表明:在预氧化条件为250℃、120 min,碳化条件为800℃、120 min条件下制得的碳纳米纤维具有...  相似文献   

13.
为开发用于空气过滤的纳米纤维,采用静电纺丝技术制备了聚丙烯腈(PAN)纳米纤维膜,探讨了其纺丝液质量分数及纺丝电压对所纺纤维微观形貌的影响,同时研究了纤维膜厚度对过滤效率和压降的影响。实验结果表明:PAN纺丝液质量分数为12%,纺丝电压为20 k V时,所得纤维粗细均匀,平均直径为230 nm;当纤维膜厚度由18μm增至35μm时,过滤压降则由121.93 Pa升至591.75 Pa,而过滤效率由81.78%升至99.24%。对过滤性能较好的纤维膜分别进行力学性能和泡压法滤膜孔径测试,测得此纤维膜的弹性模量为223.67 MPa,断裂伸长率为51.96%,拉伸断裂应力为5.93 MPa,拉伸强度为7.77 MPa,拉伸屈服应力为2.79 MPa,平均孔径为2.064 3μm。  相似文献   

14.
将不同质量分数的聚丙烯腈( PAN)纺丝液进行静电纺丝,制备了PAN纳米纤维多孔膜,并对静电纺PAN纳米纤维膜的形貌、纤维直径、孔隙率和比表面积、力学性能以及过滤性能进行表征和测试.结果表明,随着PAN质量分数的增加,纤维的平均直径明显增加;对应的静电纺多孔纤维膜的孔隙率和比表面积都减小、过滤效率降低.其中,由PAN质...  相似文献   

15.
金属氧化物/碳复合材料的设计与制备在超级电容器应用中具有至关重要的作用。为了研究钴氧化物对碳材料的电化学性能的影响,采用静电纺丝法对聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)和钴金属有机骨架材料(ZIF-67)的混合溶液进行纺丝,制备复合纳米纤维膜。对此纤维膜进行高温碳化与氧化处理,从而获得钴氧化物/碳复合材料,...  相似文献   

16.
静电纺丝滤膜具有良好的过滤性能,但是要纺制具有可控性的过滤材料,需了解纺丝参数及溶液性能与过滤性能之间的关系。首先,利用静电纺丝法制备了静电纺PAN纳米纤维膜,研究纺丝时间和纺丝液浓度对纤维膜结构和过滤性能的影响。通过扫描电子显微镜和自动滤料检测仪对PAN纳米纤维膜的形貌、过滤效率和滤阻进行了测试分析。之后研究了溶液放置时间对滤膜过滤性能的影响。研究结果表明:随纺丝时间的延长,纤维的直径变化不大,过滤效率和滤阻增加;随着纺丝液浓度的增加,纤维的直径变大,过滤效率和滤阻先增加后降低;纺丝液质量分数为10%时,滤阻较小,过滤效率高;溶液放置一定时间后,制得纤维的直径变粗,不同纺丝时间、纺丝液浓度条件下的滤膜过滤效率、滤阻均下降。  相似文献   

17.
采用静电纺丝法制备醋酸纤维素纳米纤维,研究了纺丝液溶剂对醋酸纳米纤维形貌结构的影响,并将制备的纳米纤维置于染料中研究其吸附染料的能力。结果表明,通过静电纺丝可成功制备醋酸纤维素纳米纤维,纺丝液溶剂对醋酸纤维纳米纤维形貌结构有较大影响。采用丙酮和二氯甲烷混合溶剂时,制备的纳米纤维表面具有多孔结构,且随着二氯甲烷含量的增加,多孔效果增强,多孔结构的纳米纤维具有良好的吸附染料能力。  相似文献   

18.
为发挥纳米纤维膜在高效空气过滤材料领域的作用并实现连续化生产,通过自制静电辅助溶液喷射纺丝实验机,采用Box-Behnken试验设计方法,建立了聚丙烯腈(PAN)纳米纤维直径和纺丝工艺参数的关系。利用在线复合方式连续制备了不同直径梯度复合的PAN纳米纤维膜并将其用于空气过滤领域,并对纤维膜的结构和形貌进行了表征。结果表明:通过调整纺丝工艺参数可有效地实现对纤维直径的控制;同时由该技术所制得的复合膜在消除静电后,通过物理筛分作用,对0.4 μm的癸二酸二辛酯粒子具有99.923 %的过滤效率和117 Pa的压降,对大于0.8 μm的粒子具备100 %的过滤效率。  相似文献   

19.
使用溶胶-凝胶法和静电纺丝技术制备了有机无机复合纳米纤维,经高温煅烧后得到Fe3+掺杂TiO2纳米纤维。采用各种先进仪器针对纳米纤维的表面形貌、多孔结构、结晶性能以及光降解性能进行了表征和测试。研究发现:由于Fe3+的掺杂TiO2纳米纤维的表面多孔结构有了明显的改善;Fe3+掺杂还对纳米纤维的晶胞结构以及结晶度都产生了不同程度的影响;适量的 Fe3+掺杂可显著改善TiO2纳米纤维的光催化性能。  相似文献   

20.
以DMF为溶剂,利用静电纺丝法制备了PAN/Co(OAc)2/CNTs复合纳米纤维,并通过高温碳化及活化的方法得到多孔碳基复合纳米纤维。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、ASAP 2020及Solartron 1470分别研究了纤维的表面形貌、碳基复合纳米纤维的物相、比表面积和材料的电化学性能。研究结果表明:多孔碳材料为C/Co/CNTs复合纳米纤维;前驱体复合纳米纤维表面较为光滑,高温处理处部分纤维出现断裂;碳基复合纳米纤维的比表面积和孔体积分别为771m2/g和0.347cm3/g;在电流密度为1.0A/g时复合纳米纤维的比容量可达210F/g,电流为0.5mA时能量密度为3.1Wh/Kg,电流为5 mA时功率密度为2337W/Kg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号