首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stochastic leaky integrate-and-fire (LIF) neuronal models are common theoretical tools for studying properties of real neuronal systems. Experimental data of frequently sampled membrane potential measurements between spikes show that the assumption of constant parameter values is not realistic and that some (random) fluctuations are occurring. In this letter, we extend the stochastic LIF model, allowing a noise source determining slow fluctuations in the signal. This is achieved by adding a random variable to one of the parameters characterizing the neuronal input, considering each interspike interval (ISI) as an independent experimental unit with a different realization of this random variable. In this way, the variation of the neuronal input is split into fast (within-interval) and slow (between-intervals) components. A parameter estimation method is proposed, allowing the parameters to be estimated simultaneously over the entire data set. This increases the statistical power, and the average estimate over all ISIs will be improved in the sense of decreased variance of the estimator compared to previous approaches, where the estimation has been conducted on each individual ISI. The results obtained on real data show good agreement with classical regression methods.  相似文献   

2.
The leaky integrate-and-fire (LIF) is the simplest neuron model that captures the essential properties of neuronal signaling. Yet common intuitions are inadequate to explain basic properties of LIF responses to sinusoidal modulations of the input. Here we examine responses to low and moderate frequency modulations of both the mean and variance of the input current and quantify how these responses depend on baseline parameters. Across parameters, responses to modulations in the mean current are low pass, approaching zero in the limit of high frequencies. For very low baseline firing rates, the response cutoff frequency matches that expected from membrane integration. However, the cutoff shows a rapid, supralinear increase with firing rate, with a steeper increase in the case of lower noise. For modulations of the input variance, the gain at high frequency remains finite. Here, we show that the low-frequency responses depend strongly on baseline parameters and derive an analytic condition specifying the parameters at which responses switch from being dominated by low versus high frequencies. Additionally, we show that the resonant responses for variance modulations have properties not expected for common oscillatory resonances: they peak at frequencies higher than the baseline firing rate and persist when oscillatory spiking is disrupted by high noise. Finally, the responses to mean and variance modulations are shown to have a complementary dependence on baseline parameters at higher frequencies, resulting in responses to modulations of Poisson input rates that are independent of baseline input statistics.  相似文献   

3.
We present for the first time an analytical approach for determining the time of firing of multicomponent nonlinear stochastic neuronal models. We apply the theory of first exit times for Markov processes to the Fitzhugh-Nagumo system with a constant mean gaussian white noise input, representing stochastic excitation and inhibition. Partial differential equations are obtained for the moments of the time to first spike. The observation that the recovery variable barely changes in the prespike trajectory leads to an accurate one-dimensional approximation. For the moments of the time to reach threshold, this leads to ordinary differential equations that may be easily solved. Several analytical approaches are explored that involve perturbation expansions for large and small values of the noise parameter. For ranges of the parameters appropriate for these asymptotic methods, the perturbation solutions are used to establish the validity of the one-dimensional approximation for both small and large values of the noise parameter. Additional verification is obtained with the excellent agreement between the mean and variance of the firing time found by numerical solution of the differential equations for the one-dimensional approximation and those obtained by simulation of the solutions of the model stochastic differential equations. Such agreement extends to intermediate values of the noise parameter. For the mean time to threshold, we find maxima at small noise values that constitute a form of stochastic resonance. We also investigate the dependence of the mean firing time on the initial values of the voltage and recovery variables when the input current has zero mean.  相似文献   

4.
刘清  岳东 《控制理论与应用》2009,26(9):1031-1034
对逆系统建模时,原系统的输出作为逆系统参数辨识时的输入.由于原系统输出存在测量噪声,且噪声方差未知,采用普通最小二乘法辨识,无法得到逆系统参数的一致无偏估计.为此,本文研究了一种有输入扰动的的逆系统无偏参数辨识算法,该算法先通过小波变换估计输入信号噪声的方差,再由估计得到的方差,通过偏差消除的递推最小_乘法,对逆系统的参数进行无偏辨识.该算法降低了对输入辨识信号为白噪声的要求,具有较强的实用性.由于采用递推运算,该算法也可以用于逆系统参数的在线辨识.最后,通过实验验证了该算法的有效性.  相似文献   

5.
We investigate the firing characteristics of conductance-based integrate-and-fire neurons and the correlation of firing for uncoupled pairs of neurons as a result of common input and synchronous firing of multiple synaptic inputs. Analytical approximations are derived for the moments of the steady state potential and the effective time constant. We show that postsynaptic firing barely depends on the correlation between inhibitory inputs; only the inhibitory firing rate matters. In contrast, both the degree of synchrony and the firing rate of excitatory inputs are relevant. A coefficient of variation CV > 1 can be attained with low inhibitory firing rates and (Poisson-modulated) synchronized excitatory synaptic input, where both the number of presynaptic neurons in synchronous firing assemblies and the synchronous firing rate should be sufficiently large. The correlation in firing of a pair of uncoupled neurons due to common excitatory input is initially increased for increasing firing rates of independent inhibitory inputs but decreases for large inhibitory firing rates. Common inhibitory input to a pair of uncoupled neurons barely induces correlated firing, but amplifies the effect of common excitation. Synchronous firing assemblies in the common input further enhance the correlation and are essential to attain experimentally observed correlation values. Since uncorrelated common input (i.e., common input by neurons, which do not fire in synchrony) cannot induce sufficient postsynaptic correlation, we conclude that lateral couplings are essential to establish clusters of synchronously firing neurons.  相似文献   

6.
Attention causes a multiplicative effect on firing rates of cortical neurons without affecting their selectivity (Motter, 1993; McAdams & Maunsell, 1999a) or the relationship between the spike count mean and variance (McAdams & Maunsell, 1999b). We analyzed attentional modulation of the firing rates of 144 neurons in the secondary somatosensory cortex (SII) of two monkeys trained to switch their attention between a tactile pattern recognition task and a visual task. We found that neurons in SII cortex also undergo a predominantly multiplicative modulation in firing rates without affecting the ratio of variance to mean firing rate (i.e., the Fano factor). Furthermore, both additive and multiplicative components of attentional modulation varied dynamically during the stimulus presentation. We then used a standard conductance-based integrate-and-fire model neuron to ascertain which mechanisms might account for a multiplicative increase in firing rate without affecting the Fano factor. Six mechanisms were identified as biophysically plausible ways that attention could modify the firing rate: spike threshold, firing rate adaptation, excitatory input synchrony, synchrony between all inputs, membrane leak resistance, and reset potential. Of these, only a change in spike threshold or in firing rate adaptation affected model firing rates in a manner compatible with the observed neural data. The results indicate that only a limited number of biophysical mechanisms can account for observed attentional modulation.  相似文献   

7.
针对无模型自适应控制方法在测量扰动作用下控制效果不佳的问题, 本文提出了一种新的扰动抑制无模 型自适应控制方案. 首先基于受控系统的动态线性化数据模型及测量扰动的统计特性, 在最小方差估计准则下推导 了基于系统输入输出数据的改进卡尔曼滤波器. 然后基于此滤波器给出了一种新的扰动抑制无模型自适应控制方 案. 该方案仅需用到受控系统的输入输出数据, 即可实现在强测量扰动作用下系统的无模型自适应控制. 仿真结果 显示, 相比现有的扰动抑制无模型自适应控制方案, 该方案在系统跟踪常值参考信号、时变参考信号时均能有效地 抑制测量扰动, 适用性更好的同时可以获得更小的跟踪误差及更大的数据信噪比.  相似文献   

8.
为了实现地面上目标的位置估计和跟踪,本文提出了一种摄像机平面视图与地面位置估计之间关系的建模理论。首先分析了随机变量(摄像机图像平面上的位置估计和地面上的位置估计)在投影变换下的变换方式,表明了当某些几何性质满足时,投影变换会将正态分布映射为正态分布;其次采用无迹变换来计算得到变换后的随机变量的矩;最后采用得到的建模相关性设计了一种用于多个摄像机位置估计的最小方差估计器,并应用于跟踪地面上动态环境中的多个目标;实验结果表明,本文提出的模型不仅具有较好的组合位置估计能力,而且还能够利用这种模型得到的最小方差估计器有效地呈现和跟踪地面目标。  相似文献   

9.
This paper studies the consensus control of multi-agent systems with binary-valued observations. An algorithm alternating estimation and control is proposed. Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time. Based on the estimates, each agent designs the consensus control with a constant gain at some skipping time. The states of the system are updated by the designed control, and the estimation and control design will be repeated. For the estimation, the projected empirical measure method is proposed for the binary-valued observations. The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time (the same order as that in the case of accurate outputs). For the consensus control, a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations. And, there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’ states. Finally, the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature. Simulations are given to demonstrate the theoretical results.   相似文献   

10.
In this paper, we study the problem of distributed normalized least-mean squares (NLMS) estimation over multi-agent networks, where all nodes collaborate to estimate a common parameter of interest. We consider the situations that all nodes in the network are corrupted by both input and output noise. This yields into biased estimates by the distributed NLMS algorithms. In our analysis, we take all the noise into consideration and prove that the bias is dependent on the input noise variance. Therefore, we propose a bias compensation method to remove the noise-induced bias from the estimated results. In our development, we first assume that the variances of the input noise are known a priori and develop a series of distributed-based bias-compensated NLMS (BCNLMS) methods. Under various practical scenarios, the input noise variance is usually unknown a priori, therefore it is necessary to first estimate for its value before bias removal. Thus, we develop a real-time estimation method for the input noise variance, which overcomes the unknown property of this noise. Moreover, we perform some main analysis results of the proposed distributed BCNLMS algorithms. Furthermore, we illustrate the performance of the proposed distributed bias compensation method via graphical simulation results.  相似文献   

11.
This paper discusses the state estimation and optimal control problem of a class of partially‐observable stochastic hybrid systems (POSHS). The POSHS has interacting continuous and discrete dynamics with uncertainties. The continuous dynamics are given by a Markov‐jump linear system and the discrete dynamics are defined by a Markov chain whose transition probabilities are dependent on the continuous state via guard conditions. The only information available to the controller are noisy measurements of the continuous state. To solve the optimal control problem, a separable control scheme is applied: the controller estimates the continuous and discrete states of the POSHS using noisy measurements and computes the optimal control input from the state estimates. Since computing both optimal state estimates and optimal control inputs are intractable, this paper proposes computationally efficient algorithms to solve this problem numerically. The proposed hybrid estimation algorithm is able to handle state‐dependent Markov transitions and compute Gaussian‐ mixture distributions as the state estimates. With the computed state estimates, a reinforcement learning algorithm defined on a function space is proposed. This approach is based on Monte Carlo sampling and integration on a function space containing all the probability distributions of the hybrid state estimates. Finally, the proposed algorithm is tested via numerical simulations.  相似文献   

12.
《国际计算机数学杂志》2012,89(9):2039-2059
Monte Carlo acceleration method for pricing variance derivatives under stochastic volatility models with jump diffusion is researched in the paper. Control variate and importance sampling techniques are used to reduce the variance of the simulated price of the derivative. Based on the closed-form solution of a simplified model with piecewise deterministic volatility and jump diffusion, control variate technique is proposed to reduce the simulation errors. Then importance sampling method is also introduced to solve the rare event of the jump part in the model. Through the analysis of the first and second moments of the underlying processes and simplified processes, the method to construct the efficient control variate is proposed. Importance sampling method enhances the effects of the control variate technique. The numerical experiments illustrate the high efficiency of the acceleration method, in accordance with the theoretical analysis. The methods in the paper can also be extended to the pricing of other path-dependent derivatives.  相似文献   

13.
一类非线性系统参数偏差型故障的实时检测与诊断   总被引:19,自引:1,他引:18  
本文针对一类较一般的多变量非线性时变随机系统,给出了一种全新的用于其参数偏差型故障的实时检测与诊断方法。这类故障包容了诸如部件参数的阶跃型和缓变型故障等,所给仿真实例证实了本文方法的有效性。  相似文献   

14.
For identifying errors-in-variables models, the time domain maximum likelihood (TML) method and the sample maximum likelihood (SML) method are two approaches. Both methods give optimal estimation accuracy but under different assumptions. In the TML method, an important assumption is that the noise-free input signal is modelled as a stationary process with rational spectrum. For SML, the noise-free input needs to be periodic. It is interesting to know which of these assumptions contain more information to boost the estimation performance. In this paper, the estimation accuracy of the two methods is analyzed statistically for both errors-in-variables (EIV) and output error models (OEM). Numerical comparisons between these two estimates are also done under different signal-to-noise ratios (SNRs). The results suggest that TML and SML have similar estimation accuracy at moderate or high SNR for EIV. For OEM identification, these two methods have the same accuracy at any SNR.  相似文献   

15.
Manwani A  Koch C 《Neural computation》1999,11(8):1831-1873
This is the second in a series of articles that seek to recast classical single-neuron biophysics in information-theoretical terms. Classical cable theory focuses on analyzing the voltage or current attenuation of a synaptic signal as it propagates from its dendritic input location to the spike initiation zone. On the other hand, we are interested in analyzing the amount of information lost about the signal in this process due to the presence of various noise sources distributed throughout the neuronal membrane. We use a stochastic version of the linear one-dimensional cable equation to derive closed-form expressions for the second-order moments of the fluctuations of the membrane potential associated with different membrane current noise sources: thermal noise, noise due to the random opening and closing of sodium and potassium channels, and noise due to the presence of "spontaneous" synaptic input. We consider two different scenarios. In the signal estimation paradigm, the time course of the membrane potential at a location on the cable is used to reconstruct the detailed time course of a random, band-limited current injected some distance away. Estimation performance is characterized in terms of the coding fraction and the mutual information. In the signal detection paradigm, the membrane potential is used to determine whether a distant synaptic event occurred within a given observation interval. In the light of our analytical results, we speculate that the length of weakly active apical dendrites might be limited by the information loss due to the accumulated noise between distal synaptic input sites and the soma and that the presence of dendritic nonlinearities probably serves to increase dendritic information transfer.  相似文献   

16.
This paper addresses the problem of the simultaneous state and input estimation for hybrid systems when subject to input disturbances. The proposed algorithm is based on the moving horizon estimation (MHE) method and uses mixed logical dynamical (MLD) systems as equivalent representations of piecewise affine (PWA) systems. So far the MHE method has been successfully applied for the state estimation of linear, hybrid, and nonlinear systems. The proposed extension of the MHE algorithm enables the estimation of unknown inputs, or disturbances, acting on the hybrid system. The new algorithm is shown to improve the convergence characteristics of the MHE method by reducing the delay of convergent estimates, while assuring convergence for every possible sequence of input disturbances. To ensure convergence the system is required to be incrementally input observable, which is an extension to the classical incremental observability property.  相似文献   

17.
实际工业过程中,量测数据除了在线仪表采集的快速率数据,还有离线化验等慢速率辅助量测数据.为了更好地利用离线化验数据,增加在线估计的精度,针对随机跳变系统,引入迁移学习思想,提出迁移交互多模型估计(Transfer interacting multiple model state estimator, IMM-TF)新策略.首先,将离线化验数据的边缘分布作为可以迁移的知识,迁移到贝叶斯后验分布,实现辅助量测数据的充分利用.其次,利用KL (Kullback-Leibler)散度度量知识迁移前后任务间的差异性,求解最优的贝叶斯迁移估计器.同时,结合慢速率量测,利用平滑策略获取待迁移的估计值,解决多率量测下的迁移估计难题.然后,利用影响力函数构建辅助量测数据与估计性能之间的解析关系,从而对迁移效果进行定量评价.最后,通过在目标跟踪实例中的应用,表明所提方法的有效性及优越性.  相似文献   

18.
An iterative procedure for estimating the parameters of an ARMA signal model (input not accessible) is empirically compared to the results of several other algorithms. The ARMA identifier reported includes inherent order estimation. The empirical results indicate unbiased estimates with less variance than those obtained by the other methods  相似文献   

19.
For targets with complex motion, the echo of inverse synthetic aperture radar (ISAR) is a time-varying frequency signal in azimuth. Hence, the traditional range-Doppler (R-D) algorithm based on a constant frequency is invalid. In this letter, a novel ISAR imaging method for targets with complex motion is presented. The echo in azimuth is characterized as an amplitude-modulated (AM)-cubic phase signal, which is closer to the real ISAR scene, and Radon transform cubic chirplet decomposition (RTCCD) algorithm is proposed to process the signal. By introducing Radon transform and improved cubic chirplet function (CPF), the proposed algorithm estimates the chirp rate and the cubic chirp rate simultaneously to avoid error accumulation. Therefore, the parameter estimation precision is improved, and a high quality ISAR image can be obtained. Simulations and real data experiment validate the effectiveness of the proposed method.  相似文献   

20.
In this letter, we aim to measure the relative contribution of coincidence detection and temporal integration to the firing of spikes of a simple neuron model. To this end, we develop a method to infer the degree of synchrony in an ensemble of neurons whose firing drives a single postsynaptic cell. This is accomplished by studying the effects of synchronous inputs on the membrane potential slope of the neuron and estimating the degree of response-relevant input synchrony, which determines the neuron's operational mode. The measure is calculated using the normalized slope of the membrane potential prior to the spikes fired by a neuron, and we demonstrate that it is able to distinguish between the two operational modes. By applying this measure to the membrane potential time course of a leaky integrate-and-fire neuron with the partial somatic reset mechanism, which has been shown to be the most likely candidate to reflect the mechanism used in the brain for reproducing the highly irregular firing at high rates, we show that the partial reset model operates as a temporal integrator of incoming excitatory postsynaptic potentials and that coincidence detection is not necessary for producing such high irregular firing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号