首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30‐year warranty for these 1 mm2‐sized GaAs cells (manufactured according to a light emitting diode‐like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Accelerated life tests are frequently used to provide reliability information in a moderate period of time (weeks or months), and after that, a failure analysis is compulsory to detect the failure origins. In this paper, a failure analysis has been carried out after a temperature accelerated life test on lattice matched GaInP/Ga(In)As/Ge triple junction commercial solar cells. Solar cells were forward biased in darkness inside three climatic chambers in order to emulate the photo‐generated current under nominal working conditions (a concentration level of 820 suns). After the accelerated aging test, a characterization of the resulting cells by means of quantum efficiency, dark and illumination I–V curves, electroluminescence, scanning electron microscope, energy dispersive X‐ray, scanning transmission electron microscope and X‐ray photoelectron spectroscopy has been carried out. Current is identified as the cause of degradation while temperature just dominates the accelerating factor of the aging test. Current promotes the front metal damage produced by the chemical evolution of the electroplating impurities together with those of the tab soldering process. Semiconductor structure does not seem to be responsible of any failure. Therefore, this kind of lattice matched GaInP/Ga(In)As/Ge triple junction solar cells, that as of 2016, are the workhorse of CPV technology, exhibits as a very robust device if the front metal connection is properly accomplished. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Accelerated thermal stress tests nowadays have widely been used in qualification and reliability assessment of printed wiring boards (PWBs). Predicting the field life of plated through holes (PTHs) from test data has been a primary goal of this type of testing. Understanding the PTH cycles to failure (CTF) versus temperature relationship and having a good estimate of acceleration factor (AF) not only expedites the data processing process but also helps in optimizing test conditions and minimizing the number of tests, and hence, reducing the test cost. In this paper, three different PTH CTF-temperature models, including an inverse power law (IPL) model, an IPC model, and an enhanced PTH fatigue-life prediction model, are discussed and evaluated in their effectiveness of determining acceleration factors for the purpose of PTH field life prediction under different test conditions. In addition, using the third model, AF influencing factors, including PTH geometric dimensions, PWB glass transition temperatures (Tg), and the temperature dependency of PWB material properties, are also discussed to provide information for accelerated test design in PWB qualification and reliability assessment.   相似文献   

4.
A temperature accelerated life test on commercial concentrator lattice‐matched GaInP/GaInAs/Ge triple‐junction solar cells has been carried out. The acceleration of the aging has been accomplished by subjecting the solar cells at temperatures markedly higher than the nominal working temperature inside a concentrator, and the nominal photo‐current condition (820 X) has been emulated by injecting current in darkness. Three tests at different temperatures have been carried out. The failure distributions across the three test temperatures have been fitted to an Arrhenius–Weibull model. An Arrhenius activation energy of 1.59 eV was determined from the fit. The reliability functions and parameters of these solar cells at two nominal working conditions (80 and 100 °C) have been obtained. In both cases, the instantaneous failure rate function monotonically increases, that is, the failures are of the wear‐out kind. We have also observed that the reliability data are very sensitive to the nominal temperature condition. In fact, at a nominal working condition of 820 X and 80 °C, assuming that the concentration module works 5 h per day, the warranty time obtained for a failure population of 5% has been 113 years. However, for a nominal working condition of 820 X and 100 °C, the warranty time obtained for a failure population of 5% has been 7 years. Therefore, in order to offer a long‐term warranty, the working temperature could be a key factor in the design of the concentration photovoltaic systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Light‐soaking and high‐temperature storage testing of monolithic dye‐sensitised solar modules with total area module efficiencies above 5% have been performed. Our experiences from the development of a four‐layer monolithic dye‐sensitised solar test cell for comparative testing of material components for dye‐sensitised solar cells have directed our module development to a novel device design consisting of parallel‐connection of individual monolithic cells. The results from the accelerated testing of the modules (total area of 17.0 cm2) with four parallel‐connected cells (active area of 3.38 cm2/cell) are equivalent to those obtained for the monolithic single test cells when using identical device components. The successful transfer from cell to module stability is an important milestone in our ambition to develop a low‐cost Photovoltaic (PV) technology. Moreover, our results indicate that intensified research and development to define the procedures for relevant accelerated testing of dye‐sensitised solar modules is urgently required. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Polycrystalline thin‐film CdTe/CdS solar cells have been developed in a configuration in which a transparent conducting layer of indium tin oxide (ITO) has been used for the first time as a back electrical contact on p‐CdTe. Solar cells of 7·9% efficiency were developed on SnOx:F‐coated glass substrates with a low‐temperature (<450°C) high‐vacuum evaporation method. After the CdCl2 annealing treatment of the CdTe/CdS stack, a bromine methanol solution was used for etching the CdTe surface prior to the ITO deposition. The unique features of this solar cell with both front and back contacts being transparent and conducting are that the cell can be illuminated from either or both sides simultaneously like a ‘bi‐facial’ cell, and it can be used in tandem solar cells. The solar cells with transparent conducting oxide back contact show long‐term stable performance under accelerated test conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A new interdigital design for large area dye solar modules is developed for an area of 30×30 cm2. This design requires fewer holes in the glass substrate for electrolyte filling, than the conventional strip design. A complete manufacturing process of this module—ranging from screen printed layers to semi‐automated colouring and electrolyte filling—in a laboratory‐scale baseline is illustrated. As primary sealing method, a durable glass frit sealing is used. It is shown, that the lead (Pb) content present in many glass frit powders contaminates the catalytic platinum electrode during the sintering process, resulting in a lowering of the fill factor. A screen printable lead‐free glass frit paste is developed, which solves this problem. Long term stability tests are presented on 2·5 cm2 dye solar cells, which have been completely sealed with glass frit. In consecutively performed accelerated ageing tests under 85°C in the dark (about 1400 h) and continuous illumination with visible light (1 sun, about 1700 h), a 2·5 cm2 dye solar cell with an electrolyte based on propylmethylimidazolium iodide showed an overall degradation of less than 5% in conversion efficiency. In a subsequently performed thermal cycling test (−40°C to +85°C, 50 cycles) a 2·5 cm2 dye solar cell with the same electrolyte composition also showed only a slight degradation of less than 5% in conversion efficiency. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The long term reliability of crystalline solar modules is critical to the cost effectiveness and the commercial success of photovoltaic. The binding force reduction between silver paste and silicon leads to power degradation during subsequent qualification tests or outdoor using. Hence, it is very important to investigate the binding force of busbar and its influence. In this paper, the relationship between power degradation and the binding force of busbar was investigated. Significant results about binding strength of busbar were found as a result of different silver pastes. For crystalline silicon solar cells with 1.6 mm width busbar, the binding force between silver paste and silicon is not less than 2.0 N so as to let the modules made by such cells pass qualification tests. The results laid the foundation for studying the mechanical performance of front contact metallization system for screen-printed crystalline silicon solar cells.  相似文献   

9.
李军  缪海杰 《电子测试》2011,(11):33-35
电子产品的使用者希望在其工作寿命内尽可能少发生甚至不发生故障,这对电子产品的可靠性提出了较高的要求。制造者为了确保电子产品的可靠性,必须针对产品作一系列的可靠性试验,加速寿命试验是可靠性试验中最普遍和重要的项目。本文简要介绍加速寿命试验的各种模型和它们的适用条件,分析各种加速寿命试验的优缺点。基于加速寿命试验的基本原理...  相似文献   

10.
We review published literature from 1975 to the present for accelerated stress testing of flat‐plate terrestrial photovoltaic (PV) modules. An important facet of this subject is the standard module test sequences that have been adopted by national and international standards organizations, especially those of the International Electrotechnical Commission (IEC). The intent and history of these qualification tests, provided in this review, shows that standard module qualification test results cannot be used to obtain or infer a product lifetime. Closely related subjects also discussed include: other limitations of qualification testing, definitions of module lifetime, module product certification, and accelerated life testing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In the reliability theme a central activity is to investigate, characterize and understand the contributory wear-out and overstress mechanisms to meet through-life reliability targets. For power modules, it is critical to understand the response of typical wear-out mechanisms, for example wire-bond lifting and solder degradation, to in-service environmental and load-induced thermal cycling. This paper presents the use of a reduced-order thermal model coupled with physics-of-failure-based life models to quantify the wear-out rates and life consumption for the dominant failure mechanisms under prospective in-service and qualification test conditions. When applied in the design of accelerated life and qualification tests it can be used to design tests that separate the failure mechanisms (e.g. wire-bond and substrate-solder) and provide predictions of conditions that yield a minimum elapsed test time. The combined approach provides a useful tool for reliability assessment and estimation of remaining useful life which can be used at the design stage or in-service. An example case study shows that it is possible to determine the actual power cycling frequency for which failure occurs in the shortest elapsed time. The results demonstrate that bond-wire degradation is the dominant failure mechanism for all power cycling conditions whereas substrate-solder failure dominates for externally applied (ambient or passive) thermal cycling.  相似文献   

12.
This paper proposes a methodology for assessing the concentrator solar cell reliability in a real application for a given location provided the results from accelerated life tests. We have applied this methodology for the evaluation of warranty times of commercial triple junction solar cells operating inside real concentrator modules in Golden (Colorado, USA), Madrid (Spain) and Tucson (Arizona, USA) for the period 2012–2015. Warranty times in Golden and Madrid, namely, 68 and 31 years, respectively, for the analysed period, indicate the robustness of commercial triple junction solar cells. Nevertheless, the warranty time of 15 years for Tucson suggests the need of improvement in the heat extraction of the solar cell within the concentrator module. Therefore, the influence of the location on the reliability of concentrator solar cells is huge, and it has no sense to supply general reliability values for a given concentrator product. The influence of these warranty times for the three locations on the levelised cost of electricity has been analysed. Cost of €c10–12/kWh can be achieved nowadays, while after 1 GWp cumulative installed power, a dramatic reduction to levels of €c2–3/kWh is achievable. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
《Microelectronics Reliability》2014,54(9-10):1851-1855
This paper presents a reliability life test bench specifically dedicated to high RF power devices for lifetime tests under pulse conditions. The monitoring of RF power, drain, gate voltages and currents under various pulses and temperatures conditions are investigated. A 3000 h pulsed RF life test has been conducted on a dedicated RF S-band test bench in operating modes. The investigation findings of degradations of critical electrical parameters derived from the data treatment after this accelerated ageing tests are presented. Numerous duty cycles are applied in order to stress Lateral-Diffused Metal-Oxide-Semiconductor (LDMOS). It shows with tracking of a set of RF parameters (Pout, Gain and Drain Efficiency: DE) that the dominant degradation phenomenon is linked to hot carriers generated interface states (traps) and trapped electrons. Which results in a build up of negative charge at Si/SiO2 interface and the main cause appear with incidence on RF power device. Physical simulation software (Silvaco-Atlas) has been used to locate and confirm these phenomena.  相似文献   

14.
LED可靠性评估的加速寿命试验设计方法   总被引:1,自引:0,他引:1  
介绍了一种关于发光二极管(LED)可靠性评估的加速寿命试验设计方法。通过这个方法,在针对LED的性能退化现象和运行不稳定问题进行加速试验设计时,可以在已知目标可靠度和置信度的前提下,定量地确定满足可靠性要求的试验用样本量、加速应力水平以及试验时间。同时,用于发光二极管加速寿命试验的基本设计思想,可以广泛地应用于常见电子元器件的器件产品质量认证或可靠性评估等试验设计中。  相似文献   

15.
III–V concentrator solar cells are starting to be commercialized. However, no complete studies about their reliability have been carried out. A review about both the accelerated ageing tests and real time tests developed till now is presented. A proposal about the required tests is also done. In this stage, the tests show that III–V concentrator cells are robust devices with MTTFs well over the expected ones (30 years).  相似文献   

16.
Nowadays, many innovations in the automobile are enabled by electronics. Ambient requirements can be very stringent especially when the temperature reaches 150 °C or even more. Especially electrolytic capacitors are known to be critical devices at high temperatures.Therefore, it is necessary to validate the performance of such components and check their reliability during high temperature operation. In this paper we discuss how to predict the lifetime of both aluminum and tantalum electrolytic capacitors. In that aim we first review state of the art qualification tests that allow a life prediction.We describe a test setup that we have built in order to investigate electrolytic capacitors by LCR and leakage current measurements at temperatures above current manufacturer's specifications. Results for different capacitors after variation of tests conditions will be presented.  相似文献   

17.
III-V high concentrator solar cells are promising candidates for reducing the cost of photovoltaic electricity in terrestrial applications. However, the knowledge on the reliability of these devices is still scarce. Solar panels based on III-V high concentrator solar cells are about to be commercially available, and must compete with conventional systems based on silicon which have guarantees of approximately 25 years. This paper presents results of step-stress accelerated ageing tests carried out on these solar cells. Data have been analyzed according to Weibull reliability function. This analysis yields a lower value of the MTTF of 2.02 × 105 h (i.e. about 69.2 years assuming 8 h of average operation per day in a year) for a confidence interval of 90%.  相似文献   

18.
Molded IGBT modules are widely used in low power motor drive applications due to their advantage like compactness, low cost, and high reliability. Thermo-mechanical stress is generally the main cause of degradation of IGBT modules and thus much research has been performed to investigate the effect of temperature stresses on IGBT modules such as temperature swing and steady-state temperature. The temperature swing duration is also an important factor from a real application point of view, but there is a still lack of quantitative study. In this paper, the impact of temperature swing duration on the lifetime of 600 V, 30 A, 3-phase molded Intelligent Power Modules (IPM) and their failure mechanisms are investigated. The study is based on the accelerated power cycling test results of 36 samples under 6 different conditions and tests are performed under realistic electrical conditions by an advanced power cycling test setup. The results show that the temperature swing duration has a significant effect on the lifetime of IGBT modules. Longer temperature swing duration leads to the smaller number of cycles to failure. Further, it also shows that the bond-wire crack is the main failure mechanism of the tested IGBT modules.  相似文献   

19.
In this investigation, the accelerated optical degradation of two different commercial Bisphenol-A Polycarbonate (BPA-PC) grades under elevated temperature stress is studied. The BPA-PC plates are used both in light conversion carriers in LED modules and encapsulants in LED packages. BPA-PC plates are exposed to temperatures in the range of 100–140 °C. Optical properties of the thermally-aged plates were studied using an integrated sphere. The results show that increasing the exposure time leads to degradation of BPA-PC optical properties, i.e. decrease of light transmission and increase in the yellowing index (YI). An exponential luminous decay model and Arrhenius equation are used to predict the lumen depreciation over different time and temperatures. Accelerated thermal stress tests together with the applied reliability model are used to predict the lifetime of plastic lens in LED lamps in real life conditions.  相似文献   

20.
This article presents a reliability assessment of aeronautic electronic board using the accelerated test approach. The mission profile used is one defined in FIDES for electronic equipment in aircraft. The reliability function is defined taking into account the different phases of product life (Ground, Taxiing, Flying, Dormant). FIDES describes the environment (thermal and humidity, thermal cycling, mechanical, …) for each phase. The paper presents the different accelerated life models used to take into account all environment. A test plan is proposed to estimate the unknown parameters of accelerated life models. The thermal and humidity and thermal cycling tests have been performed and the data are analyzed. Finally, the reliability function is evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号