首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
锥形光纤的功率分布特性   总被引:3,自引:1,他引:2  
从波动理论出发,对锥形光纤的纵向传播常数进行泰勒(Taylor)级数展开,经近似得到了锥形光纤功率分布的解。基于此理论,对锥形光纤的功率分布特性进行了讨论,并分析了锥形光纤的长度、锥度和光纤折射率等参数对锥形光纤不同模式功率分布的影响。为了减小功率泄漏,当光从锥形光纤大端入射时,应当减小锥长,减小锥度,增大纤芯包层折射率差;当光从锥形光纤小端入射时,应当增加锥长,增加锥度,增大纤芯包层折射率差。在长锥长、大锥度情况下,光纤折射率分布的影响相对较小。  相似文献   

2.
黄守萍 《光通信研究》1989,(2):47-50,53
本文分析了内芯为三角分布的分段芯型光纤的各折射率剖面参数对光纤特性的影响。得到了一条适当的设计途径,使这种光纤的截止波长、色散、模场直径等均达到令人满意的值。  相似文献   

3.
黄平 《激光技术》2012,36(5):674-676
为了研究长周期光纤光栅纤芯、包层半径及折射率改变时光栅有效折射率和耦合系数的变化规律,采用理论分析与数值模拟相结合的方法,总结出长周期光纤光栅结构参量与透射谱谐振波漂移的关系。结果表明,当光纤结构参量a1,a2,n1和n2增大时,谐振波向短波方向漂移,仅当周期Λ增大时,谐振波才向长波方向漂移。这一结果对设计长周期光纤光栅是有帮助的。  相似文献   

4.
研究和分析了光纤芯区径向折射率分布对大芯径光纤基模的功率传输特性(主要包括最大功率密度和等效模面积这两个参数)的影响。采用一种可适用于多种光纤实际折射率分布的独特数学表达式,研究了折射率分布形状变化时大芯径光纤基模在横截面内功率密度分布与等效模面积的变化,并将结果与阶跃型折射率光纤进行对比。计算结果表明,在传输功率相同、光纤基模与高阶模等效折射率差大于10-4的前提下,折射率在芯区中心有一定凹陷的分布可以有效降低横截面内基模功率密度的最大值,增大基模的等效模面积。这一研究为设计和制作可以传输更大功率的大芯径的无源和有源单模光纤提供了理论基础。  相似文献   

5.
本文从理论上分析了多模梯度光纤数值孔径及折射率剖面指数的波长依赖关系。对两种掺杂的石英玻璃光纤进行了数值计算。计算结果表明,数值孔径NA及折射率剖面指数a都与波长有关,然而随波长的变化量很小。  相似文献   

6.
提出了一种具有双模大模场面积的多芯光纤,建立了该多芯光纤的电磁场模型并采用有限元方法对其进行求解。基于该模型研究了光纤的模式特性和弯曲特性,系统分析了纤芯间距、纤芯半径和芯包折射率差对光纤模式特性和基模有效模场面积的影响。结果表明:通过引入空气孔并适当减少纤芯间距、纤芯半径和芯包折射率差,该光纤能实现严格的双模传输。保持双模传输时,通过增大纤芯间距,减小纤芯半径和芯包折射率差均有助于增大基模的模场面积。通过调整结构参数,在近似满足双模传输的条件下,光纤的基模模场面积在平直状态下可达到3155μm2。  相似文献   

7.
徐中南  刘泽金 《激光与红外》2010,40(10):1088-1092
利用传输矩阵法,数值分析了光栅参数对折射率剖面非均匀的均匀光纤光栅及取样光纤光栅的透射谱、偏振关系损耗和偏振模色散的影响。计算结果表明,均匀光纤光栅的光栅条纹可见度及光栅周期对其偏振关系损耗和偏振模色散影响很大;改变取样光纤光栅的取样周期及光栅段长度,透射谐振峰的幅度、偏振关系损耗和偏振模色散的最大值均随取样光纤光栅长度的增加而递增。与靠近中心波长的谐振峰相比,折射率剖面非均匀导致的双折射对取样光纤光栅远离中心波长的谐振峰的影响较小。  相似文献   

8.
数值分析了亚波长悬浮芯光纤在气体传感方面的应用。利用有限元法研究了相对灵敏度、有效模场面积、限制损耗与光纤参数包括纤芯直径和光纤材料折射率之间的关系。结果显示,相对灵敏度和限制损耗随着纤芯直径和光纤材料折射率的降低而增加。随着纤芯直径的减小,有效模场面积出现了先减小后增加的现象。增加包层孔直径能有效降低限制损耗,而相对灵敏度和有效模场面积保持不变。这些结果证明,亚波长悬浮芯光纤非常适合成为高灵敏度、大有效模场面积、低限制损耗的气体传感器。  相似文献   

9.
采用波长可调谐激光光源远场扫描(FFS)法,利用高度精确的模场直径(MFD)/有效面积(Aeff)测试系统,对各种光纤的Aeff与MFD之间的关系进行了研究。结果发现,大有效面积色散位移光纤(LEDSF)的MFD和Aeff对波长的依赖性比普通单模光纤(SMF)、截止位移光纤(CSF)、色散位移光纤(DSF)和零色散位移光纤(NZDSF)大。给出了详细测量结果及测试曲线图。  相似文献   

10.
随着光纤到户网络的逐渐普及,弯曲不敏感光纤受到了越来越多的关注。对下陷层辅助弯曲不敏感光纤进行了系统的研究。在带有下陷层的弯曲不敏感光纤中,下陷层的折射率差、下陷层的宽度以及下陷层至芯层的距离是影响弯曲损耗的三个重要参数。结合上述三个参数,系统研究了光纤半径以及涂覆层折射率对弯曲损耗的影响。研究表明,通过改变光纤半径可以有效降低弯曲损耗;在特定的弯曲半径下,当涂覆层折射率增大时可以有效减小光纤的弯曲损耗。这些结论对弯曲不敏感光纤的设计及制造具有指导意义。  相似文献   

11.
本文应用有限元方法,求解了任意径向非均匀折射率分布圆柱对称介质波导中纵向场耦合波动方程定解问题所对应的变分问题,计算了任意径向非均匀折射率分布介质波导的截止波长。阶跃光纤与幂指数折射率分布光纤计算结果与文献结果的比较表明,该方法计算结果精度高且不需要弱导或高斯模场分布等限制要求。然后本文研究了带阶跃环的三角型分段折射率分布光纤归一化截止频率随结构参数变化的规律。  相似文献   

12.
We describe the dopant dependence of the effective nonlinear refractive index n2eff in GeO2- or F-doped core fibers theoretically and experimentally. We show that the dopant dependence of the nonlinear refractive index n2 of F-doped bulk glass is the inverse of that of GeO2-doped bulk glass. We also show that the effective nonlinear refractive index n2eff in F-doped core fibers, estimated by using the dopant content dependence of n2, is in good agreement with our experimental results. Moreover, we confirm that n2eff in an optical fiber strongly depends on the refractive index profile of its core  相似文献   

13.
塑料光纤纤芯折射率分布的聚焦法测量   总被引:4,自引:1,他引:3  
蒋黎红  吴欣  章献民  戴新华  徐坚 《半导体光电》2001,22(4):250-252,255
采用聚焦法对渐变折射率塑料光纤纤芯折射率分布进行了测量。聚焦法是一种非破坏性的测量方法,用平行光线垂直照射塑料光纤,并用聚焦于纤芯边界平面的显微镜进行观察,像平面的光强分布由计算机进行视频采集,经过计算得出纤芯的折射率分布。设计了测试系统,得到了塑料光纤的折射率分布曲线,并进行了误差分析。  相似文献   

14.
The skew of fiber ribbons must be small for high bit rate parallel optical transmission systems. Accurate skew evaluation using fiber parameters is important for this purpose. A simple method, based on the calculus of variations, is proposed for evaluating the skews of fiber ribbons. This method employs only one mode field (LP01 mode) of an ideal step-index fiber as a trial function and a two-dimensional (2-D) refractive index profile. The measured skews of a 16-fiber ribbon composed of fibers with different parameters are compared with calculated values and are found to be in good agreement. The influence on the skew of several refractive index profile deviations (including asymmetric profile deviations) are evaluated using the proposed method. It is found that the asymmetric core profile has a large influence on skew whereas that of the asymmetric core-cladding boundary is relatively small  相似文献   

15.
Chromatic dispersions of optical fibers with Kerr-effect nonlinearity are investigated. Under high optical intensity, dispersion characteristics become different from those of the linear state (or weak optical intensity) since the refractive index profile changes in accordance with the intensity profile. Nonlinear dispersion characteristics are calculated for step-index and quadratic profile fibers with core-cladding, core, and cladding nonlinearity. It is shown that although the propagation constant of the step-index fiber increases substantially from the linear value, the group delay and waveguide dispersion do not increase as much  相似文献   

16.
This paper proposes a novel technique for automatic waveguide formation by means of the self-trapping effect of optical fiber irradiation into a photopolymerizing resin. We investigate experimentally the phenomenon of thin cladding layer formation surrounding the core following the core creation. In the proposed technique, a counterdiffusion effect involving polymerizing monomers via the core/cladding interface causes enrichment of a low refractive index monomer, and a resultant "W-shaped" refractive index profile is realized. The measured propagation loss of the fabricated waveguide is 1.7 dB/cm at 0.68 /spl mu/m wavelength. This technology is appropriate for the fabrication of large-core optical waveguides of greater than 0.5 mm in diameter and is useful for automating the optical fiber connection and packaging process by virtue of being an all-passive optically induced process.  相似文献   

17.
A rapidly converging numerical technique for the evaluation mode characteristics of circularly symmetric optical fibers with an arbitrary complex refractive index profile is presented. This method is based on transmission-line principles. From Maxwell's equations, we derive a transmission-line equivalent circuit for the optical fiber refractive index profile and we demonstrate how it can be used to determine the mode effective index (normalized propagation constant) of cylindrical dielectric waveguides. To illustrate the effectiveness of the procedure, we have applied it to circularly symmetric fibers with complex step, parabolic, and segmented optical refractive index profiles. We have used this method to evaluate and manipulate the gain in a typical 980-nm pumped erbium-doped fiber as well as for calculating attenuation of optical fibers when radial loss factors are present.  相似文献   

18.
阙文修  姚熹  霍玉晶 《中国激光》1995,22(5):353-356
利用镁离子内扩散方法,实现了铌酸锂单晶光纤具有抛物折射率分布的芯-包层波导结构,并对镁离子内扩散包层后的晶纤进行了损耗测量,测得其损耗系数比镁离子内扩散前降低14dB/cm的好结果。此外,还对镁离子内扩散前后晶纤的光斑形状进行了观察和比较。  相似文献   

19.
The refractive index distribution in the core of a multimode optical-fiber waveguide plays an important role in determining the transmission properties of the guide. The closer the index profile is to the required ideal distribution, the greater the resulting information carrying capacity of the fiber. This review paper discusses methods for measuring the refractive index distribution in optical fibers and for predicting their impulse response and signal bandwidth from the measured profiles. Some attention is also given to preform and single-mode fiber profiling.  相似文献   

20.
Microbending losses in single-mode fibers with several types of core refractive index profiles are compared. Numerical calculations were carried out to characterize fibers with step, power-law,Wand ring-shaped index profiles. Step-index andWfibers exhibit a small excess loss near the single-mode operation upper limit. However, permissible offset misalignment in fiber splice at constant microbending loss is nearly identical for step, power-law, andWfibers. An index dip at the core center has an undesirable influence on the required splicing accuracy. The effects of fiber curvature statistics and index profile parameters are investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号