首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
激光再制造技术熔覆工艺设计   总被引:1,自引:0,他引:1  
介绍了激光再制造技术中的光束模式、表面预处理、熔覆过程、后处理等熔覆工艺种类及选择依据,对送粉方式、预热处理等熔覆工艺方式进行理论和实验研究,为激光再制造技术的熔覆工艺设计提供了依据。  相似文献   

2.
激光熔覆技术研究现状及其发展   总被引:8,自引:1,他引:7  
在简要阐释激光熔覆技术工作原理和技术特点的基础上,介绍了激光熔覆材料体系、工艺种类、工艺参数和涂覆层微观组织结构,另外讨论了激光熔覆技术所面临的主要问题,并提出了激光熔覆技术的发展趋势。重点介绍了所做的一些相关工作:激光熔覆MCrAlY涂层、激光熔覆纳米涂层、激光熔覆过程中热力耦合有限元数值模拟、激光熔覆过程裂纹形成机理及控制、激光熔覆纳米陶瓷颗粒增强金属基梯度涂层以及激光多层熔覆大厚度纳米热障陶瓷涂层成型控制等。  相似文献   

3.
为了减少熔覆开裂,提高熔覆质量,本文采用一定光束间距的并联双光束激光对铸铁表面进行熔覆,建立熔覆过程三维热力耦合模型,分析双光束激光熔覆热/力特征变化。计算结果表明,双光束激光在提高熔覆效率的同时,相邻两熔道彼此进行预热与缓冷,减小了激光熔覆过程中急剧升温与冷却产生的巨大温度梯度,降低熔层和结合区的残余应力水平,进而达到抑制裂纹产生的效果。1 800 W-1 400 W功率组合、光束间距为12.5 mm是较为理想的参数组合。  相似文献   

4.
同步送粉大功率激光表面宽带熔覆技术   总被引:5,自引:1,他引:4  
报道通过积分镜将激光光束聚焦成宽光带、配合同轴保护矩形送粉喷头实现大功率激光宽带熔覆的装置及其工艺试验结果,激光功率为14kw时,单道熔覆层宽度达45mm,厚度达3mm,熔覆层表面平整,厚度均匀.  相似文献   

5.
激光熔覆技术及其在模具中的应用   总被引:10,自引:0,他引:10  
闫忠琳  叶宏 《激光杂志》2006,27(2):73-74
激光熔覆技术是现代表面工程技术中的一种极有发展前途的高新技术。概述了激光熔覆技术的工艺特点、熔覆材料和工艺方法。文中采用NiCrBSi合金粉末,对灰铸铁玻璃模具进行了激光熔覆表面改性处理,使模具寿命提高了10倍。  相似文献   

6.
镁合金表面激光熔覆技术的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
综述了镁合金表面激光熔覆技术的研究进展状况。介绍了镁合金表面激光熔覆工艺特点和工艺方法;阐述了工艺参量对熔覆层性能的影响;总结了当前镁合金表面激光熔覆的主要材料体系及其熔覆层的组织和性能;展望了镁合金表面激光熔覆技术今后的发展方向。  相似文献   

7.
激光表面熔覆与合金化送粉装置的设计   总被引:2,自引:0,他引:2  
设计了一种结构简单,载粉运动方向与激光光束保持一致,可对垂直表面进行加工,使用方便的激光表面熔覆与合金化送粉装置。并用所设计的送粉装置进行了激光表面熔覆实验,获得了较理想的加工效果。  相似文献   

8.
汽轮机汽蚀叶片的激光宽带熔覆修复   总被引:1,自引:0,他引:1  
利用激光宽带熔覆技术对表面汽蚀的汽轮机叶片进行修复。采用同步送粉的方式进行自熔性Ni-Cr-B-Si合金粉末的激光熔覆,获得耐磨涂层。实验所用设备为TRUMPF-6000 CO2激光器,利用积分镜对激光束进行整形获得宽带激光束,借助扫描电子显微镜(SEM,LEO 1450)和能谱仪(EDS)对激光熔覆层进行组织结构及成分分析。研究结果表明,激光熔覆层硬度可达HRC45-50,高于其基底材料2Cr13的硬度(HRC35-40)。熔覆层的组织结构受到熔覆工艺参数的影响很大,采用最优化工艺参数形成的熔覆层结构均匀,与母材冶金结合良好,且无气孔或裂纹缺陷。  相似文献   

9.
尹维一  溥涛 《应用激光》2004,24(1):19-20
本文叙述了熔覆Ni -Wc技术在修复烧结机破碎辊等方面的工艺应用。该工艺技术采用自重送粉法 ,在ZG35CrMo基体表面用圆光斑激光熔覆Ni-Wc复合涂层 ,在熔覆过程中严格控制激光功率、扫描速度、送粉量、光斑进给量 ,以及基材的温度 ,该工艺方法可有效的减少表面裂纹、气孔的产生 ,并能降低基体材料对熔覆材料的稀释 ,有效地提高熔覆层的硬度 ,耐磨性 ,延长破碎辊的使用寿命  相似文献   

10.
激光表面熔覆作为一种再制造技术手段被应用于零件表面的修复和强化.针对以激光表面熔覆为主要工艺的铁路货车易磨损零部件车钩的再制造,以有限元方法模拟熔覆过程中熔覆区和基体的温度场.在研究激光表面熔覆数值模拟的热源模型、相变潜热以及网格划分等相关技术的基础上,模拟分析激光束与圆柱内孔表面不同夹角时,预置式激光熔覆和同步送粉式激光熔覆温度场变化,进行对比.模拟结果符合激光表面熔覆的基本规律,可应用于车钩再制造过程中的激光表面熔覆工艺的预估与设计.  相似文献   

11.
超声表面波是检测激光熔覆层质量的重要手段,为提高检测分辨率,采用可达到声束聚焦效果的相控阵表面波对激光熔覆层进行检测。建立了单探头与相控阵表面波传播的有限元模型,基于Fermat原理研究超声波传播路径并分析了阵元延时特性,实现了相控阵表面波的聚焦和偏转,研究了熔覆层厚度对相控阵表面波聚焦特性的影响。结果表明,对于基体材料为铝,熔覆层材料为45#钢时,熔覆层厚度在2.5 mm内,聚焦点的能量随厚度增加而减小,如1 mm厚相对于0.2 mm厚的聚焦点能量减小了58.8%;当厚度大于2 mm时,聚焦点处能量变化不明显,表明超声相控阵表面波对薄的熔覆层具有较好的检测效果。  相似文献   

12.
激光熔覆含碳化钨的镍基合金   总被引:5,自引:0,他引:5  
在20Cr2NiSiW基体上熔覆添加碳化钨的镍基合金,对熔覆层的应力状态进行了分析, 基体的熔前预热和熔覆层的熔后保温,可以改善熔覆层的应力分布。在表面层和基体之间熔覆具有良好韧性的“过渡层”,减少了微裂纹。分析了掺碳化钨的镍基合金复合熔覆层的硬度分布和微观结构。改进了激光熔覆工艺,得到了应力分布状态较好的无裂纹的激光熔履层。  相似文献   

13.
利用环形光斑复合镜对千瓦级横流CO_2激光器光束进行变换,使光束由圆形变换为环形,用该光束对发动机曲轴常用材料──球墨铸铁进行了镍基合金激光熔敷,阐明了激光熔敷工艺、熔敷层组织结构及硬度特点,并在废弃曲轴上进行了初步试验。  相似文献   

14.
使用2kW半导体激光在工具钢表面熔覆高速钢粉末。在同轴送粉的粉末汇聚点与激光的聚焦点可获得无裂纹的熔覆层。随着激光功率的增加,熔覆层厚度和粉末利用率增加,同时基体对熔覆层的稀释率下降。获得的熔覆层的硬度达到800Hv0.3,基体硬度200Hv0.3,表明大功率半导体激光在表面熔覆领域具有很好的应用前景。  相似文献   

15.
激光熔覆WC颗粒增强Ni基合金组织性能的研究   总被引:2,自引:0,他引:2  
在H13钢表面进行了激光熔覆Ni基合金+WC粉末实验,测试了熔覆层的组织和性能。实验表明激光熔覆可以得到组织致密,晶粒细化,稀释率低,与基体结合牢固的表面强化层。熔覆层的平均硬度为630 HV0.2,耐磨损性能比基体提高145%。H13钢是常用热作模具钢之一,由于工作条件恶劣,经常发生磨损失效,经激光熔覆强化后,其使用寿命将大大提高。  相似文献   

16.
激光熔覆熔凝过程等离子体光信号的监测   总被引:1,自引:1,他引:0  
激光熔覆熔凝过程监测是激光熔覆层质量控制的方法之一。采用基模激光,以类似预置粉末的方式,在一定的工艺条件下对45#钢样件表面激光熔覆Ni60,并采用光电管传感器对此实验条件下熔覆再熔凝过程中产生的等离子体特征信号之一光信号进行检测,并分析了激光功率、扫描速度与等离子体蓝紫光信号强度的关系以及蓝紫光信号强度与熔覆层质量的关系。实验结果表明,在此实验条件下光强信号随激光功率增大而增大,但幅度不大。在激光功率未达到某特定值时,激光功率不变,扫描速度增加光强减小;当激光功率达到或超过此值后,激光功率一定时光强信号随着扫描速度的增加而增大;当光强信号处于1.7~2.5μW/cm2间且波动幅度较小时熔覆层质量好。分析表明当激光功率突破阈值后,扫描速度增加熔深变浅,用于材料气化的能量增加,因此蓝紫光强度增大。  相似文献   

17.
毛怀东  张大卫 《应用激光》2007,27(3):186-191
激光熔覆层中的裂纹一直是一个限制其工业应用的难题。本文首次提出利用声发射技术在线检测熔覆及冷却过程中裂纹的发生和扩展,对三种熔覆粉末的裂纹信号进行分析比较,得出随熔覆层面积厚度及冷却速度的增加,裂纹数增大。多数裂纹产生于熔覆过程,个别在冷却过程。裂纹走向以垂直于激光扫描方向为主,裂纹起源为熔覆层和基体结合带,多数贯穿整个熔覆表面。如能结合热检测,可通过对熔覆材料特定温度下性能改进控制熔覆层裂纹。  相似文献   

18.
激光熔覆对铝合金疲劳性能的影响   总被引:5,自引:1,他引:4  
对模拟腐蚀损伤的铝合金试样表面进行了激光熔覆填充处理,分析了激光熔覆层的显微组织,并对熔覆试样和基材试样进行了疲劳寿命对比实验。结果表明,表面激光熔覆会显著降低材料的疲劳性能,在99%可靠度的前提下,熔覆试样的安全寿命比基材试样有所降低。其主要影响因素有熔覆层底部的枝晶、重熔区内的缺陷和熔覆层内的拉应力。经过表面机械冲击后,疲劳性能得到显著提高,提高幅度为244%,疲劳断口形貌表明,熔覆层有明显的疲劳特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号