首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical and electrical properties have been measured for amorphous SiC films prepared by rf sputtering in a pure Ar atmosphere with a sintered 6H-SiC target. The absorption edge E0 determined from the relation of αhΝ = B(hΝ-E0)2 ranged from 1.45 to 1.80 eV depending on the film thickness and the substrate temperature. The room temperature electrical conductivity is in the range of 5.4×10−11 and 1.4×10−5 Ω−1cm−1. The absorption edge decreases and the conductivity increases with increasing film thickness. The absorption edge shifts to shorter wavelengths (blue shift) and the conductivity decreases during annealing below 400‡C for 60 min, whereas the absorption edge shifts to the longer wavelength side (red shift) and the conductivity increases during annealing at 800‡C It is proposed that the two annealing processes cause structural changes in amorphous SiC films, one of which involves removal of defects or voids while the other involves rearrangement or rebonding of the component atoms.  相似文献   

2.
Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5×104)−(3×105) Ohm cm) or low n-type conductivity (n ⋍1014 cm−3) with mobilities in the latter case of 130–150 cm2/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2×1015 cm−3, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at Ec −0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples.  相似文献   

3.
Aluminum nitride (AlN) films have been grown in pure N2 plasma using cathodic arc ion deposition process. The films were prepared at different substrate bias voltages and temperatures. The aim was to investigate their influence on the Al macro-particles, structural and optical properties of deposited films. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Scanning electron microscope (SEM) and Rutherford backscattering spectrometry (RBS) were employed to characterize AlN thin films. XRD patterns indicated the formation of polycrystalline (hexagonal) films with preferential orientation of (002), which is suppressed at higher substrate bias voltage. FTIR and Raman spectroscopic analysis were used to assess the nature of chemical bonding and vibrational phonon modes of AlN thin films respectively. FTIR spectra depicted a dominant peak around 850 cm?1 corresponding to the longitudinal optical (LO) mode of vibration. A shift in this LO mode peak towards higher wavenumbers was observed with the increase of substrate bias voltage and temperature, showing the upsurge of nitrogen concentration in the deposited film. Raman spectra illustrated a peak at 650 cm?1 corresponding to E2 (high) phonon mode depicting the c-axis oriented (perpendicular to substrate) AlN film. SEM analysis showed the AlN film deposited at higher substrate bias voltage contains fewer amounts of Al macro-particles.  相似文献   

4.
We have investigated the n-dopant distribution in the overgrown and window regions of lateral-epitaxial overgrown GaN/sapphire (0001) using room-temperature micro-Raman spectroscopy in the backscattering configuration. From a fit to the high energy-coupled longitudinal optical (LO) phonon-plasmon mode (LPP+), we have evaluated n ≈ (6.5±0.6) × 1017 cm−3 in the overgrown region; a value considerably higher than that previously reported by Pophristic et al.5 The spectrum from the window region was harder to interpret because of the considerable overlap of the A1(LO) mode and Eg (750 cm−1) sapphire line with the LPP+ trace. The implications of our findings for the overgrown region on the measured thermal conductivity as well as other parameters will be discussed.  相似文献   

5.
This paper describes the effect of Al doping (0 at.% to 6 at.%) on the structural and optoelectronic properties of nanocrystalline ZnO thin films deposited by thermal evaporation. X-ray diffraction patterns confirm that an increase in Al concentration (from 0% to 6%) in ZnO lowers the crystallinity of the films and reduces grain size. Al doping is also found to influence the optical properties of the ZnO thin films. Visible transmittance above 85% was obtained by increasing the Al doping to 6%. The optical bandgap was found to vary from 3.20 eV to 3.97 eV with changing Al content from 0% to 6%, which is in accordance with the Burstein–Moss shift. The mobility of ZnO thin films can be varied from 5.60 cm2/Vs to 24.25 cm2/Vs, the carrier concentration from 5.93 × 1018/cm3 to 9.11 × 1020/cm3, and the resistivity from 4.62 × 10−4 Ω cm to 4.34 × 10−2 Ω cm, depending on the Al doping concentration (0% to 6%). This study suggests that ZnO:Al films can be tailor-made to meet the requirements for various optoelectronic applications such as flexible photocells or ultraviolet (UV) photodetectors covering a wide range of short wavelengths.  相似文献   

6.
Silicon dioxide dielectric films were deposited at low temperatures (250–300°) using a novel plasma enhanced MO-CVD process. In this process, the substrate was kept remote from the plasma region and the deposition of the film was achieved at low pressure (0.8-1.0 Torr) and low dc plasma power (0.3 W· cm−2). Films deposited using tetraethyloxysilane (TEOS) and nitrous oxide (N2O) as reactant material had, under optimum deposition conditions, resistivities of ≥ 1015 ohm-cm, a refractive index of 1.46, a dielectric constant of 3.98 and a breakdown field strength ≥ 5x 106 V·cm−1. AES and SIMS analysis indicated that the films were of high purity and were stoichiometric with no metallic silicon present. MOS-capacitors fabricated on Si-substrates showed no hysteresis and no frequency dispersion of capacitance in the accumulation region. An interface state density in the range of 1011 cm−2eV−1 was achieved for these MOS devices using our deposited SiO2dielectric films.  相似文献   

7.
The properties of ZnO thin films codoped with lithium and phosphorus have been characterized. The films were deposited from high-purity ZnO and Li3PO4 solid targets onto c-plane sapphire substrates by radiofrequency (RF) magnetron sputtering. A substrate temperature of 900°C was determined as optimum for depositing undoped ZnO films with background electron concentration of 9.9 × 1015 cm?3 as the buffer layer on the sapphire substrate. Postdeposition annealing was carried out using rapid thermal processing in O2 at temperatures ranging from 500°C to 1000°C for 3 min. Analyses performed using low-temperature photoluminescence spectroscopy measurements revealed luminescence peaks at 3.356 eV, 3.307 eV, 3.248 eV, and 3.203 eV at 12 K for the codoped samples. X-ray diffraction 2θ-scans showed a single peak at about 34.4° with full-width at half-maximum of about 0.09°. Hall-effect measurements revealed initial p-type conductivities, but these were unstable and toggled between p-type and n-type over time with Hall concentrations that varied between 2.05 × 1013 cm?3 and 2.89 × 1015 cm?3. The fluctuation in the carrier type could be due to lateral inhomogeneity in the hole concentration caused by stacking faults in the films. An additional cause could be the small Hall voltages in the measurements, which could be significantly impacted by even small spikes in signal noise inherent in the measurements.  相似文献   

8.
A stable increase by as much as 108 in the conductivity of amorphous indium oxide to σ≥ 103-1 cm−1 can be achieved by ultraviolet photoreduction. This treatment also increases the absorption coefficient, α(hυ), by up to a factor of 103 for hυ <1.5 eV due to free carrier absorption and causes a 0.1 eV shift of the absorption edge to the blue. These changes are controlled by the Fermi level, EF, which is presumably determined by doping due to oxygen vacancies. A diffusion constant D >3 x 10−12 cm2/s for oxygen at 300K is determined from a constant flow experiment. Oxygen diffusion is verified by secondary ion mass spectrometry with 18O. The functions α(hυ) and σ(T) are simulated as EF is varied using a simple density of states model appropriate for amorphous semiconductors. These simulations qualitatively agree with the experimental data if transitions from the conduction band tail to the conduction band are assumed to be forbidden.  相似文献   

9.
Argon ions were implanted into n-type 6H-SiC epitaxial layers at 600°C. Postimplantation annealing was carried out at 1,600°C for 5 min in an Ar ambient. Four implantation-induced defect levels were observed at EC-0.28 eV, EC-0.34 eV, EC-0.46 eV, and EC-0.62 eV by deep level transient spectroscopy. The defect center at EC-0.28 eV is correlated with ED1/ED2 and with ID5. The defect at EC-0.46 eV with a capture cross section of 7.8 × 10−16 cm2 is correlated with E1/E2, while the defect at EC-0.62 eV with a capture cross section of 2.6 × 10−14 cm2 is correlated with Z1/Z2. Photo deep level transient spectroscopy was also used to study these defects. Upon illumination, the amplitudes of the deep level transient spectroscopy (DLTS) peaks increased considerably. Two emission components of Z1/Z2 were revealed: one fast and the other slow. The fast component could only be observed with a narrow rate window. In addition, a new defect was observed on the low-temperature side of the defect at EC-0.28 eV when the sample was illuminated. [rl](Received ...; accepted ...)  相似文献   

10.
The electrical properties of sets of simultaneously grown p-type polycrystalline Si films, deposited by SiH4 pyrolysis on polycrystalline high-purity alumina substrates and B-doped during growth, were determined by Hall-effect measurements in the temperature range 77-420K as functions both of impurity doping concentration N (~10l5 to ~1020cm−3) and average grain size (≈1 to ≈125μm) in the film. Room temperature data showed rapidly increasing resistivities and rapidly decreasing free-carrier concentrations for doping below a critical concentration Nm and distinct mobility minima at that concentration, with the value of Nm being larger the smaller the average grain size. Measurements as a function of sample temperature showed the intergrain barrier height Eb, decreasing from a maximum value of ~0.4eV at the critical concentration to very small values (~0.01eV) for concentrations above 1019cm−3, with a functional dependence close to Eb ∝l/N1/2 and Eb for any given concentration being larger the smaller the average grain size. Results are interpreted in terms of the grain-boundary trapping model. Trapped carrier densities in the grain boundaries were calculated to range from ~5×l011cm−2 at N≈Nm to ~5×l012cm−2 for N>1019cm−3, the density being higher the smaller the grain size, and evidence was found for an energy distribution of traps in the Si bandgap, rather than a fixed density at a single discrete energy level. The observed relationship between Nm and average grain size nearly coincides with that of the model for films with ~lμm grain size but sharply departs from it for larger grain sizes, indicating probable applicability of the model for grain sizes up to that range. aThis work was supported by the U.S. Department of Energythrough its San Francisco Operations Office under Contract DE-AC03-79ET23045 and monitored by the Solar Energy Research Institute, Golden, CO. bThese results were first described at the 22nd Electronic Materials Conference, Ithaca, NY, June 21–27, 1980, Paper No. M4.  相似文献   

11.
N-doped p-type ZnO thin films were grown on c-sapphire substrates, semi-insulating GaN templates, and n-type ZnO substrates by metal organic chemical vapor deposition (MOCVD). Diethylzinc and oxygen were used as precursors for Zn and O, respectively, while ammonia (NH3) and nitrous oxide (N2O) were employed as the nitrogen dopant sources. X-ray diffraction (XRD) studies depicted highly oriented N-doped ZnO thin films. Photoluminescence (PL) measurements showed a main emission line around 380 nm, corresponding to an energy gap of 3.26 eV. Nitrogen concentration in the grown films was analyzed by secondary ion mass spectrometry (SIMS) and was found to be on the order of 1018 cm−3. Electrical properties of N-doped ZnO epilayers grown on semi-insulating GaN:Mg templates were measured by the Hall effect and the results indicated p-type with carrier concentration on the order of 1017 cm−3.  相似文献   

12.
Transparent conducting gallium-doped ZnO films are deposited on glass substrates by magnetron sputtering of conducting ceramic targets. The dependences of structural, electric, and optical characteristics of ZnO:Ga films on the substrate temperature are investigated during the deposition. Stability of resistivity of films is considered during annealing in air. It is found that the films deposited at the substrate temperature of 250°C have the lowest resistivity of 3.8 × 10−4 Ω cm, while those deposited at 200°C have the highest thermal stability.  相似文献   

13.
Oxide films grown on silicon in dry oxygen ambient at room temperature by negative point-to-plane corona discharge are investigated. A significant oxidation rate is observed at room temperature using this technique. Electrical properties of these room termperature grown oxides are examined. The capacitance-voltage measurements on the MOS structures fabricated from these oxides indicate a negative flat-band voltage of −1.5 V. Interface state density distribution in the range of 1010−1013 cm−2(eV)−1 is observed with a value of 2×1010 cm−2(eV)−1 at 0.17 eV above the valence band edge. Electrical conduction through the oxide is greater for negative values of applied gate bias voltages and the magnitude of conduction through the oxide decreases with decreasing current density during the corona discharge. Oxides grown at room temperature by this technique may find selective application in low temperature device processing.  相似文献   

14.
MgO-doped ZnO films, metastable in nature, are deposited by combustion flame pyrolysis, as this is one of the suitable methods for fabricating such nonequilibrium films. Experiments to alloy ZnO with MgO have been carried out, aiming to expand the band-gap to the ultraviolet region. Structural and optical studies show that Zn1−x Mg x O films with various x values (x = 0.2, 0.3, 0.33, and 0.4) could be obtained and the band-gap of ZnO could be tuned from 3.26 eV to 3.76 eV.  相似文献   

15.
The residual electrically active defects in(4×10~(12)cm~(-2)(30KeV)+5×10~(12)cm~(-2)(130KeV))si-implanted LEC undoped si-GaAs activated by two-step rapid thermal annealing(RTA)LABELED AS 970℃(9S)+750℃(12S)have been investigated with deep level transient spec-troscopy(DLTS).Two electron traps ET_1(E_c-0.53eV,σ_n=2.3×10~(-16)cm~2)and ET_2(E_c-0.81eV,σ_n=9.7×10(-13)cm~2)are detected.Furthermore,the noticeable variations of trap's con-centration and energy level in the forbidden gap with the depth profile of defects induced by ion im-plantation and RTA process have also been observed.The[As_i·V_(As)·As_(Ga)]and[V_(As)·As_i·V_(Ga)·As_(Ga)]are proposed to be the possible atomic configurations of ET_1 and ET_2,respectively to explaintheir RTA behaviors.  相似文献   

16.
Shallow and deep centers in ZnO(P)/MgZnO/ZnO/MgZnO/ZnO(Ga) structures grown by pulsed laser deposition on sapphire were studied before and after annealing in oxygen atmosphere at high temperatures of 850°C to 950°C. In both as-grown and annealed structures, microcathodoluminescence spectra in the near-bandgap region demonstrate a blue-shift by 0.13 eV compared with bulk ZnO films, indicating carrier confinement in the MgZnO/ZnO/MgZnO quantum well (QW). Annealing strongly decreases the concentration of shallow uncompensated donors from ~1017 cm−3 to ~1016 cm−3 and makes it possible to probe the region of the QW by capacitance–voltage (CV) profiling. This profiling confirms charge accumulation in the QW. The dominant electron traps in the as-grown films are the well-known traps with activation energies of 0.3 eV and 0.8 eV. After annealing, the electron traps observed in the structure have activation energies of 0.14 eV, 0.33 eV, and 0.57 eV, with the Fermi level in the n-ZnO(P) pinned by the 0.14-eV traps. The annealing also introduces deep compensating defects that decrease the intensity of band-edge luminescence and produce a deep luminescence defect band at 2.2 eV. In addition, a defect vibrational band becomes visible in Raman spectra near 650 cm−1. No conversion to p-type conductivity was detected. The results are compared with the data for the structures successfully converted to p-type, and possible reasons for the observed differences are discussed.  相似文献   

17.
The electrical and optical properties of undoped n-AlGaN films with Al mole fraction close to x=0.4 were studied before and after implantation of 3×1016 cm−2 250-keV Mn, Co, and Cr ions. The electrical properties of the virgin samples are shown to be dominated by deep donors with the level near Ec-0.25 eV and concentration of about 2×1018 cm−3. The microcathodoluminescence (MCL) spectra of the virgin samples were dominated by two strong defect bands at 2.5 eV and 3.7 eV. After implantation, the resistivity of the implanted films increased but could not be accurately measured because of the shunting influence of the unimplanted portions of the films. Their resistivity was increased by more than an order of magnitude compared to the virgin samples because of the compensation by defects coming from the implanted layer during the post-implantation annealing. The absorption and luminescence spectra of the implanted samples were dominated by two strong bands near 2 eV and 3.5 eV. The latter are attributed to the electron transitions from the Mn, Co, or Cr acceptors to the conduction band.  相似文献   

18.
Photocapacitance (PHCAP) measurements have been carried out on GaP crystals grown by the liquid-encapsulated Czochralski (LEC) method with heat treatment under various phosphorus-vapor pressures at different temperatures. Electron traps of EC−1.1 eV, EC−1.6 eV, EC−1.9 eV, and a hole trap of EV+2.26 eV are mainly detected. The phosphorus-vapor pressure dependence of the EC−1.9 eV trap density and their diffusion behavior indicate that they are interstitial phosphorus atoms. The densities of both EC−1.1 eV and EC−1.6 eV traps are strongly dependent on the shallow impurity concentrations. Moreover, the density of EC−1.1 eV traps increases with increasing phosphorus-vapor pressure. From these results, we suggest that EC−1.1 eV traps are the complexes of shallow donors and antisite phosphorus atoms. Deep-level densities in GaP crystals after annealing at 860°C or 960°C for 60 min are decreased almost one order of magnitude lower than those in untreated substrate crystals, which should have occurred via out-diffusion of interstitial phosphorus atoms. However, such an effect is not prominent for 800°C treatment for 60 min.  相似文献   

19.
We have studied the effect of Se-doping on deep impurities in AlxGa1−xAs (x = 0.2∼0.3) grown by metalorganic chemical vapor deposition (MOCVD). Deep impurities in various Se-doped AlxGa1−xAs layers grown on GaAs substrates were measured by deep level transient spectroscopy and secondary ion mass spectroscopy. We have found that the commonly observed oxygen contamination-related deep levels at Ec-0.53 and 0.70 eV and germanium-related level at Ec-0.30 eV in MOCVD grown AlxGa1−xAs can be effectively eliminated by Se-doping. In addition, a deep hole level located at Ey + 0.65 eV was found for the first time in Se-doped AlxGa1-xAs when Se ≥2 × 1017 cm−3 or x ≥ 0.25. The concentration of this hole trap increases with increasing Se doping level and Al composition. Under optimized Se-doping conditions, an extremely low deep level density (Nt less than 5 × 1012 cm−3, detection limit) Al0.22Ga0.78As layer was achieved. A p-type Al0.2Ga0.8As layer with a low deep level density was also obtained by a (Zn, Se) codoping technique.  相似文献   

20.
SiO2 films were deposited in an rf inductive discharge plasma (13.56 MHz) at a substrate temperature of-550 K and an ion energy of 35 eV. Variable parameters were silane and oxygen flow rates, pressure (0.3–1.2 Pa), and ion current density (1–2.5 mA/cm2). In these ranges of the process parameters, good silicon dioxide films with a composition close to that of thermally oxidized SiO2 were obtained. The film growth rate was found to be 65 nm/min. The deposition nonuniformity was <4% over 100-mm silicon wafers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号