首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
设计了一种基于某65 nm CMOS工艺的3.5 GHz时钟校准电路,应用于高速高精度DAC中。该电路采用延迟锁相环结构,优化DAC内部的数字和模拟通路时钟信号,使数据在3.5 GHz速率下完成正确转换,有效提高了系统时钟的稳定性。电源电压为1.2 V/3.3 V,时钟相位调节精度为2 ps/LSB,目标锁定相位可调,带有时钟占空比调制功能,最大功耗小于60 mW。  相似文献   

2.
高性能数字时钟数据恢复电路   总被引:2,自引:1,他引:1  
设计了一个数字时钟数据恢复电路,采用相位选择锁相环进行相位调整,在不影响系统噪声性能的前提下大大降低了芯片面积。该电路应用于100 MHz以太网收发系统中,采用中芯国际0.18μm标准CMOS工艺实现,核心电路相位选择锁相环的芯片面积小于0.12 mm2,电流消耗低于4 mA。仿真与测试结果表明,恢复时钟抖动的峰峰值小于350 ps,相位偏差小于400 ps,以太网接收误码率小于10-12,电路可以满足接收系统的要求。  相似文献   

3.
提出了一种基于Xilinx Virtex-5 FPGA的时钟相移采样(SCS)时间数字转换器(TDC)。利用Virtex5内部的时钟管理模块(CMT)产生16路固定相移的时钟信号,经过16路D触发器对输入信号同时进行采样量化。与传统的基于抽头延迟链结构相比,所用资源更少,性能更加稳定。仿真结果表明,该TDC的精度高于64 ps,占用数字时钟管理(DCM)与锁相环(PLL)资源小于20%,积分非线性(INL)和微分非线性(DNL)都小于0.3 LSB。  相似文献   

4.
该文提出一种通用的时间数字转换器(TDC)码密度校准信号产生方法,该方法基于相干采样理论,通过合理设置TDC主时钟和校准信号之间的频率差,结合输出信号保持电路,产生校准用的随机信号,在码密度校准过程中,随机信号均匀分布在TDC的延时路径上,实现对TDC的bin-by-bin校准。基于Xilinx公司的28 nm工艺的Kintex-7 现场可编程门阵列(FPGA)内部的进位链实现一种plain TDC,利用该方法校准plain TDC的码宽(抽头延迟时间),研究校准了2抽头方式下的TDC的性能参数,时间分辨率(对应TDC的最低有效位,Least Significant Bit, LSB)为24.9 ps,微分非线性为(–0.84~3.1)LSB,积分非线性为(–5.0~2.2)LSB。文中所述的校准方法采用时钟逻辑资源实现,多次测试考核结果表明,单个延时单元的标准差优于0.5 ps。该校准方法采用时钟逻辑资源代替组合逻辑资源,重复性、稳定性较好,实现了对plain TDC的高精度自动校准。该方法同样适用于其他类型的TDC的码密度校准。  相似文献   

5.
李轩  张长春  李卫  郭宇锋  张翼  方玉明 《微电子学》2014,(6):793-797, 802
采用标准0.18 μm CMOS工艺,设计了一种相位选择(PS)/相位插值(PI)型半速率时钟数据恢复电路。该电路主要由半速率Bang-Bang鉴相器、改进型PS/PI电路、数字滤波器和数字控制器等模块构成。改进型PS/PI电路通过两个相位选择器和两个相位插值器实现正交时钟的产生,相较于传统结构,减少了两个相位选择器,降低了复杂度和功耗。数字滤波器和数字控制器通过Verilog代码自动综合生成,降低了设计难度。Cadence仿真结果表明,输入2.5 Gb/s伪随机数据时,电路在1.8 μs时锁定,锁定后恢复出的时钟和数据峰峰值抖动分别为17.71 ps和17.89 ps,可以满足短距离I/O接口通信的需求。  相似文献   

6.
文章详细分析并讨论了应用于相位体制DRFM的ADC参数表征及测试方法。提出用相位非线性(PDNL和PINL)来描述相位体制ADC的静态性能,用瞬时工作带宽(IBW)及相位精度随频率的变化来描述相位ADC的频域性能。采用上述方法对利用南京电子器件研究所标准3"GaAsMESFET全离子注入工艺流片得到的3bit相位体制ADC进行了性能表征及测试,结果表明其静态PDNL≤0.01LSB,PDNL≤±0.007LSB;电路可在2GHz时钟下完成采样、量化,达到2Gbps的转换速率,其瞬时带宽可达250MHz,带内相位精度小于±0.45LSB。  相似文献   

7.
设计并实现了一个基于延时锁定环(DLL)、用于超宽带(UWB)无线通信系统的1.25GHz时钟生成电路。该时钟生成电路由两个DLL和一个自调谐LC滤波电路组成,输入125MHz的参考时钟,输出1.25GHz的差分时钟和间隔100ps的16相时钟。通过优化电荷泵电路有效地减小了静态相位误差,新式自调谐LC滤波电路的应用消除了工艺偏差对谐振的影响。在1.8V电源电压,SMIC0.18μmCMOS工艺下,该时钟生成电路在各种工作条件下均表现出良好的性能,在标准情况下静态相位误差仅为9ps,最大时钟抖动为10ps。当电感存在30%的工艺偏差时,滤波电路的谐振频率能够自动维持在1.25GHz上。  相似文献   

8.
设计了一种用于解调GFSK信号的时间数字转换器(Time Digital Converter,TDC),该时间数字转换器主要由延时链、D触发器、延时校准电路等组成.TDC对中频信号进行采样,将信息从频率信号转换到二进制码.延时校准电路保证延时单元的延时准确.TDC采用TSMC 0.18μm CMOS工艺实现,版图面积为0.08mm2.仿真结果表明,TDC的最大微分非线性为0.07LSB,最大积分非线性为-0.17LSB,功耗0.9mW,最大抗频率失调范围为±350kHz.  相似文献   

9.
本文呈现了一款基于0.18?m CMOS工艺的采样率为2GSPS的16位数模转换器。此DAC采用数字域分时复用的系统架构,利用双通道LVDS接口接收数据,采用模拟DLL技术来满足LVDS数据初始相位与数据采样时钟相位关系的时序要求,设计FIFO吸收“数据时钟”和“DAC系统时钟”的相位误差,采用延迟控制器调节高速数字域时钟和模拟域时钟之间的相位关系,从而获得2GHz的采样率。同时,针对高位电流源失配设计后台数字校正。芯片测试结果显示,该DAC在模拟输出36MHz基波时的宽带SFDR达到74.02dBc,采用数字校正技术后D/A转换器的DNL小于±3.0LSB,INL小于±4.3LSB。  相似文献   

10.
张辉  杨海钢  王瑜  刘飞  高同强 《半导体学报》2011,32(4):045010-6
本文设计实现了一种用于FPGA芯片的可重构多功能的锁相环时钟发生器。该时钟发生器具有可配置的时钟发生和延时补偿两种模式,分别实现时钟倍频和相位对准的功能。输出时钟信号还具有可编程的相移和占空比调节等高级时钟变化功能。为了提高相位对准和相移的精度,本文设计了一种具有新的快速起振技术的压控振荡器。本文还提出了一种延时分割方法以提高用于实现相移和占空比调节功能的后端分频器的速度。整个时钟发生器使用0.13μm标准CMOS工艺设计制作。测试结果表明,能够实现270MHz到1.5GHz的宽调节范围,当锁定在1GHz时,整个电路功耗为18mW,rms抖动小于9ps,锁定时间为2μs左右。  相似文献   

11.
An integrated CMOS subnanosecond time-to-digital converter (TDC) has been developed and evaluated for positron emission tomography (PET) front-end applications. The TDC architecture combines an accurate digital counter and an analog time interpolation circuit to make the time interval measurement. The dynamic range of the TDC is programmable and can be easily extended without any timing resolution degradation. The converter was designed to operate over a reference clock frequency range of 62.5 MHz up to 100 MHz and can have a bin size as small as 312.5 ps LSB with 100-ns conversion times. Measurements indicate the TDC achieves a DNL of under /spl plusmn/0.20 LSB and INL less than /spl plusmn/0.30 LSB with an rms timing resolution of 0.312 LSB (97.5 ps), very close to the theoretical limit of 0.289 LSB (90 ps). The design is believed to be the first fully integrated CMOS subnanosecond TDC used in PET medical imaging and the first realization of a CMOS TDC that achieves an rms timing resolution below 100 ps within a 100-ns conversion time.  相似文献   

12.
碲镉汞雪崩光电二极管(HgCdTe APD)是目前红外焦平面技术前沿研究之一,低温下高精度时间标记读出电路是APD焦平面的基础,直接影响到APD红外焦平面性能.时间数字转换电路(TDC)是实现高精度时间标记的方法之一.基于对低温下金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Fie...  相似文献   

13.
In this paper, a fast-lock mixed-mode delay-locked loop (MMDLL) is presented. The digital part of the MMDLL utilizes a 2-b SAR algorithm to achieve short lock time compared to the conventional RDLL, CDLL, and SARDLL, while the analog part helps to reduce the residue phase error introduced by the digital part and improve the output jitter performance. The measured RMS and peak-to-peak jitters and the static phase error are 6.6, 47, and 12.4 ps, respectively, for a 100-MHz input clock. The power consumption is 15.8 mW in the locked state at a 2.7-V supply voltage. The maximum lock time is 13.5 clock cycles (135 ns) when the residue phase error is within 1 LSB (156 ps)  相似文献   

14.
CMOS集成时钟恢复电路设计   总被引:6,自引:1,他引:5  
该文设计了一个集成时钟恢复电路,恢复时钟的频率为125MHz。通过采用电流相减技术等补偿措施,很大程度上降低了振荡器的压控增益,从而在不影响电路性能的前提下大大地降低了芯片面积。本设计采用0.25m标准CMOS工艺实现,有效芯片面积小于0.2mm2,功耗仅10mW。在各种工艺角、温度以及供电电源条件下的仿真结果均表明,该电路相位偏差小于200ps,时钟抖动的峰峰值小于150ps。该文对一个采用本时钟恢复电路的100MHz PHY系统进行流片、测试,验证了时钟恢复电路能够正常工作。  相似文献   

15.
A 3-ns-range, 8-ps-resolution timing generator LSI has been realized by using Si bipolar gate arrays. By adopting a redundant weighted delay-unit matrix based on a process-insensitive polynomial formulation, ±2-ps linearity error has been attained at input clock rates of up to 700 MHz. Thermal noise and interconnection crosstalk have been quantitatively investigated as critical factors causing timing error. By adopting the results to the circuit and layout design, thermal jitter and systematic timing error due to crosstalk were successfully suppressed to less than 8 and ±5 ps. respectively  相似文献   

16.
This paper presents a wide-range all digital delay-locked loop (DLL) for multiphase clock generation. Using the phase compensation circuit (PCC), the large phase difference is compensated in the initial step. Thus, the proposed solution can overcome the false-lock problem in conventional designs, and keeps the same benefits of conventional DLLs such as good jitter performance and multiphase clock generation. Furthermore, the proposed all digital multiphase clock generator has wide ranges and is not related to specific process. Thus, it can reduce the design time and design complexity in many different applications. The DLL is implemented in a 0.13 μm CMOS process. The experimental results show that the proposal has a wide frequency range. The peak-to-peak jitter is less than 7.7 ps over the operating frequency range of 200 MHz-1 GHz and the power consumption is 4.8 mW at 1 GHz. The maximum lock time is 20 clock cycles.  相似文献   

17.
High frequency clock rate is a key issue in today's VLSI. To improve performance on-chip, clock multipliers are used. But it is a difficult task to design such circuits while maintaining low cost. This paper presents a circuit fabricated to test a new method of clock frequency multiplication. This new approach uses a digital CMOS process in order to implement a fully integrated digital delay locked loop. This multiplier does not require external components. Moreover, as it is primarily intended for ASIC design, it is generated by a parameterized generator written in C which relies on a portable digital standard cell library for automatic place and route. The design based on the delay locked loop allows the clock waveform to reach its operating point faster than conventional methods. Special techniques enable high multiplication factors (between 4 and 20) without compromising the timing accuracy. With a clock multiplier of 20, in 1 μm CMOS process and a 5 V supply voltage, a 170 MHz clock signal has been obtained from a 8.5 MHz external clock with a measured jitter lower than 300 ps  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号