首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
在以LiNi1/3Co1/3Mn1/3O2为正极,活性炭(AC)为负极的混合型锂离子超级电容器体系中,研究以LiBF4和Et4NBF4的不同配比混合为溶质的乙腈(Acetonitrile,AN)电解液对超级电容器性能的影响。结果表明,随着电解液中Et4NBF4与LiBF4的比值的增大,LiNi1/3Co1/3Mn1/3O2/AC体系超级电容器的线性放电区间逐渐变窄,循环性能逐渐变差。其中采用1 mol/L的LiBF4/AN为电解液的超级电容器的综合性能较好,其线性放电区间为0~2.7 V,倍率性能也较好,最大比功率达到23 600 W/kg,经3 000次循环后容量保持率为93.2%。  相似文献   

2.
以橄榄石型磷酸亚铁锂(LiFePO4)为正极,活性炭(AC)为负极,制备了LiFePO4/AC混合超级电容器。通过充放电、倍率和漏电流测试,系统研究了所制混合超级电容器的电化学性能。结果表明,在正负极活性物质质量比为0.8∶1.0的条件下,混合超级电容器综合性能最佳:比容量为25.38 mAh.g–1,比能量为3.21 Wh.kg–1,分别是活性炭超级电容器的2.83倍和2.17倍,且在大倍率充放电下循环稳定性好、漏电流小,在1600 s后漏电流为0.25 mA。  相似文献   

3.
在电解液(NH4)2SO4中加入Li 添加剂,用以提高二氧化锰/活性炭混合超级电容器以及活性炭电容器的容量.测试结果表明,当在2 mol/L 的(NH4)2SO4溶液中添加0.37 mol/L的Li2CO3时,比容量提高幅度最大.添加剂在混合超级电容器中起的作用比在单纯活性炭超级电容器中大.对于混合超级电容器,加入Li 添加剂后比容量提高了77 %,且2 000次循环后比容量为30 F/g,仅衰减了2.9 %.  相似文献   

4.
在电解液(NH4)2SO4中加入Li+添加剂,用以提高二氧化锰/活性炭混合超级电容器以及活性炭电容器的容量.测试结果表明,当在2 mol/L 的(NH4)2SO4溶液中添加0.37 mol/L的Li2CO3时,比容量提高幅度最大.添加剂在混合超级电容器中起的作用比在单纯活性炭超级电容器中大.对于混合超级电容器,加入Li+添加剂后比容量提高了77 %,且2 000次循环后比容量为30 F/g,仅衰减了2.9 %.  相似文献   

5.
电容器     
0622723 NiO/AC非对称超级电容器的研究[刊,中]/庄凯//西华大学学报(自然科学版).—2006,26(1).—6-7,13 (G)通过热处理球形Ni(OH)_2得到NiO粉末,将其作为正极与活性炭(AC)负极组装成非对称超级电容器,用恒流充放电测试分析了超级电容器的电容特性。讨论了正负极活性物质比例、充放电电流和热处理时间对超级电容器比电容量、内阻的影响。结果表明:正负极活性物质比为1:3,工作电流密度为200mA/g,当Ni (OH)_2的热处理时间为2h,充电电压为1.3V时,超级电容器的双电极比电容量可达7.15F/g。参9 0622724一种新颖的串联超级电容器组的电压均衡方法[刊,  相似文献   

6.
球形多孔炭具有堆实密度高、电极制作容易、比电容高等优点,是超级电容器理想的电极材料。优化球形多孔炭的比表面积和孔径结构是提高其储能性能的重要途径。本文将氯化锌活化剂与间苯二酚-六次甲基四胺原位共聚,再低温化学活化或辅以二氧化碳物理活化,得到了比表面积1947 m~2/g,孔体积1.27 cm~3/g的球形多孔炭。在1 mol/L的TEABF_4/PC电解液中,以所制球形多孔炭为电极的超级电容器在功率密度分别为259和9519W/kg时,比能量达到30和15 Wh/kg,且在1 A/g循环5000次后,比容量仍然保持在84%。  相似文献   

7.
以(NH4)2S2O8为氧化剂,在1 mol/L盐酸环境下化学氧化合成超级电容器用电极材料纳米聚苯胺(PANI)。在1 mol/L H2SO4溶液中考察了材料的电容性能。结果表明:在循环伏安图上出现三对氧化还原峰,分别对应聚苯胺在三种不同氧化状态间的转化以及PANI的降解。放电电流密度为(1.0,4.5,10)×10–3A/cm2时,比容量分别为654,591,525 F/g。经恒定电流10 mA充放电循环1 000次,衰减仅为初始容量的10.7%。  相似文献   

8.
以湿法涂布的超级电容器碳极片为原料,通过辊压控制获得不同压实比的极片,再按相同的工艺制成2.7 V/50F的电容单体,考察了压实比对内阻和循环性能的影响。结果表明,不同压实比的碳极片,对超级电容器单体的内阻和电性能具有显著影响,超级电容器的容量发挥率和循环稳定性随着压实比的增加呈现先增加后下降的趋势,而超级电容器的内阻随压实比的增加先下降后增加,过大的压实比不利于获得优异的超级电容器电性能。当压实比为15%时,获得了首次容量发挥率为94.54%,20C 10 000次循环后的容量保持率为93.1%的理想超级电容器性能。  相似文献   

9.
石墨烯的微波法制备及其电化学电容性能的研究   总被引:1,自引:1,他引:0  
以天然鳞片石墨为原料,采用改进的Hummers方法制备了氧化石墨,然后通过微波剥离还原氧化石墨制备了石墨烯,并利用红外光谱、扫描电镜和透射电镜对其进行了表征。以所制石墨烯为电极材料、1 mol/L的TEMABF4/PC为电解液制备了超级电容器,并对其电化学性能进行了研究。结果表明:经过微波剥离,氧化石墨的含氧基团已基本完全分解,所得石墨烯为表面具有大量褶皱的薄层。所制电容器具有良好的电容性能,在扫描速度为10 mV/s情况下,其单电极比容量为102 F/g,比能量则高达22.1 Wh/kg。  相似文献   

10.
采用化学沉淀法制备出超级电容器用纳米MnO2电极材料,研究了热处理工艺对MnO2电容性能的影响。结果表明,产物主相为α-MnO2,粒度分布较均匀,在50~100 nm;热处理温度和时间对MnO2的电容性能有着重要影响。将在300℃热处理3 h的MnO2与活性炭电极组成非对称超级电容器,循环充放电500次,容量仅衰减2.24%;在电流密度为500 mA/g时,比电容量达302.52 F/g。  相似文献   

11.
模板法制备超级电容器活性炭电极材料   总被引:2,自引:1,他引:1  
以硅溶胶为模板剂,酚醛树脂为炭源,采用模板法制备了超级电容器活性炭电极材料。利用SEM和BET对实验制备的活性炭进行了分析和表征。以实验研制的活性炭为电极材料,通过循环伏安和恒流充放电测试对其电容性能进行了研究。结果表明:实验研制的活性炭的比表面积为1840m2/g,在7.5×10–3A/cm2的电流密度下,其比容达到290F/g。  相似文献   

12.
开发可控的NiMoO4纳米结构合成方法是获得高性能赝电容器电极材料的关键.以Ni-MOF为前驱体,采用模板转化法合成NiMoO4纳米球,以改善其结构并提升电化学性能.采用XRD、FTIR和SEM对所制备的NiMoO4样品的结构和形貌进行表征,并通过氮气吸脱附表征了其孔径和比表面积.MOF衍生的NiMoO4纳米球由超薄的...  相似文献   

13.
以石油焦为原料,KOH为活化剂,经微波加热活化,制备出了超级电容器用高性能活性炭电极材料。以制得的活性炭制成的电极片为电极,6mol/L的KOH溶液为电解液,组装了模拟电容器。研究了加热时间和碱焦比对活性炭比表面积及电容器性能的影响。研究表明:在KOH与石油焦按3∶1的质量比混合,微波辐射时间为15min时,制备的活性炭比表面积达2683m2/g,模拟电容器单电极比电容量达361F/g。  相似文献   

14.
以荷叶茎为原料,通过高温退火处理和KOH活化得到多孔碳,并将其作为硫的载体材料,最终得到C/S正极材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、热重法(TG)、BET分析和喇曼光谱对目标产物进行了表征,研究了C/S正极材料的结构和形貌。将C/S作为锂硫电池正极材料进行电化学测试,其显示了优异的电化学性能。在0.1 C(1 C=1672 mA·g-1)的电流密度时,C/S正极循环200圈后比容量高达847 mA·h·g-1。在0.5 C的电流密度时,C/S正极循环500圈后比容量还能高达690 mA·h·g-1。同时,C/S正极进行倍率性能测试时,其在0.1 C和5 C电流密度下,比容量分别为1067和417 mA·h·g-1。另外,当电流密度恢复到0.1 C,比容量能够恢复到939 mA·h·g-1,表明C/S正极具有良好的倍率性能。所以,制备的C/S正极具有广阔的应用前景。  相似文献   

15.
超电容器活性炭/炭黑复合电极电容特性研究   总被引:3,自引:0,他引:3  
为制备实用化的超电容器,对活性炭材料进行了表征,详细描述了活性炭/炭黑复合电极的制备工艺。通过循环伏安法和恒电流充电法,对活性炭/炭黑复合电极在水系电解液中的电容行为进行了研究。结果表明:活性炭的BET比表面积达1 654 m2/g,具有合理的孔径分布,主要在2 nm附近。添加高比表面积、高导电性纳米级炭黑制备的活性炭/炭黑复合电极具有优良的电容行为和较好的功率特性,复合电极的比容量达到102.4 F/g。此外还对孔径分布与电容的关系进行了阐述。  相似文献   

16.
应用sol-gel浸渍与热处理工艺相结合,在活性炭表面包覆Sb掺杂的SnO2薄膜对电极进行修饰,构成AC-SnO2/KOH/AC-SnO2双电层电容器,测试结果表明,400 mA/g电流密度条件下,修饰后的双电层电容器在0.001~1.5 V相对较高电压区间的放电容量,比AC/KOH/AC双电层电容器在0.001~1.0 V电压区间高36%,但AC-SnO2的单电极比电容仅为AC单电极比电容的91.9%;当电流密度大于400 mA/g,两种电极的大电流性能相当。  相似文献   

17.
采用辐照凝胶法制备了锂离子电池正极用LiNi1/3Co1/3Mn1/3O2粉体材料。采用XRD、SEM和电化学充放电测试对制备材料的结构和性能进行了表征。结果表明:900℃制得的样品具有较好的层状结构,结晶性适中,电化学性能优异:其首次放电容量高达184mA·h/g(2.80~4.50V,C/10),30次循环后的容量保持率为87.4%,表现出较好的充放电容量和循环性能,较之850,950℃煅烧样品具有最小的交流阻抗和直流阻抗。  相似文献   

18.
为了制备高体积比电容活性炭微球(AMCMB),以KOH/NaOH为复合活化剂,在850℃下对中间相沥青微球(MPMB)进行活化处理。考察了KOH/NaOH复合活化剂不同组份质量比对AMCMB收率、振实密度及比电容的影响。结果表明:随着NaOH含量的增加,AMCMB的比电容呈现先增加后减小的趋势,并在质量比ζ(KOH:NaOH)=5:1时达到最大值81F/cm3,其孔径以微孔为主,中孔含量较高,平均孔径约为2.21nm,比表面积达2788m2/g,适合用作超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号