首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种干涉型微纳光纤磁场传感器,由微纳光纤干涉仪和TbDyFe超磁致伸缩棒构成,单模光纤经过熔融拉锥形成双锥型微纳光纤干涉仪,与TbDyFe超磁致伸缩棒平行固定封装,磁场作用下磁致伸缩棒和微纳光纤干涉仪发生轴向应变,引起干涉谱的波长漂移,形成波长编码型的光纤磁场传感器。实验结果表明,相同应变特性的微纳光纤干涉仪,磁致伸缩棒直径越小,磁场灵敏度越高,直径为2 mm的TbDyFe磁致伸缩棒组成的光纤磁场传感器灵敏度可以达到0.178 nm/mT,该传感器结构简单,易于制备,成本低廉,响应快,可以实现微弱磁场的高灵敏探测。  相似文献   

2.
研究了氧化石墨烯(Graphene Oxide,GO)修饰的色散拐点长周期光纤光栅(Dispersion-Turning-Point Long Period Fiber Grating,DTP-LPFG)传感器,分析了其光谱特性及对外部折射率的灵敏度特性。利用准连续KrF激光器在载氢单模石英光纤上制作周期约为136μm的DTP-LPFG,采用氢键结合的方式将GO涂覆于光栅表面,构成基于GO修饰的DTP-LPFG传感器。实验结果表明:随着GO在DTP-LPFG表面的沉积,其双谐振峰的左峰发生蓝移,右峰发生红移,双峰间距增大;在1.33~1.38折射率范围内,该传感器在涂覆GO后,谐振双峰间距变化量的折射率灵敏度约为831.89nm/RIU,较未修饰GO的DTP-LPFG提高了1.05倍。  相似文献   

3.
提出一种星形金纳米颗粒修饰的81°倾斜光纤光栅(TFG)生物传感器。通过金黄色葡萄球菌蛋白A固定法,将自制的高纯度新城疫病毒(NDV)单克隆抗体固定于81°TFG表面,制成对NDV具有特异性检测功能的生物传感器。结果表明,传感器对NDV的最低探测极限达10~25pg/mL,检测饱和点约为1 000pg/mL;在0~200pg/mL具有较好的线性相关度(R2约为0.911),相应的灵敏度约为1 394pm/(ng/mL)。此外,通过对NDV的特异性和临床性测试,表明该生物传感器对NDV具有高度的特异性和临床有效性。  相似文献   

4.
为了实现高精度和高灵敏度的折射率测量,采用微米级氢氟酸液滴化学腐蚀的方法制作非对称的微纳光纤Fabry-Perot (FP)腔,具有波导尺寸小、损耗低、双折射率高和腔Q值高等优点。不同正交偏振方向的谐振模式对外界折射率变化具有不同的响应,沿光纤快轴方向的模式折射率灵敏度为133.8 nm/RI-unit,沿光纤慢轴方向的模式折射率灵敏度为117.1 nm/RI-unit,快慢轴方向的温度灵敏度均为11.99 pm/℃,通过光谱仪监测两束偏振光的波长差可实现温度独立的折射率测量。采用不同FP腔参数的光纤传感器进行实验研究,结果表明,光纤FP传感器腔直径越小,腐蚀占腔长比越高,其折射率灵敏度越高。  相似文献   

5.
利用一种新型光纤法布里-珀罗干涉仪,制作出一种光纤应变传感器。通过将一段石英毛细管与单模光纤熔接在一起,并将石英毛细管熔接部位熔为锥形制作而成。理论分析了传感器的工作原理与灵敏度,搭建了传感器应变测试系统。实验表明:在常温(20°C)下,采用波峰(谷)追踪法解调,传感器对应变有良好的线性响应,且灵敏度为1.34 pm/με,最小应变分辨率为3.73με,传感器的温度敏感系数约为5.66 pm/°C。因此,该传感器在应变测试中存在一定的潜在应用价值。  相似文献   

6.
降钙素原(Procalcitonin,PCT)对于反映患者炎症甚至败血症患病程度具有重要意义。为实现低浓度PCT的免标记检测,利用极大倾角光纤光栅(Excessively Tilted Fiber Grating,Ex-TFG)的低温度交叉敏感性和高折射率灵敏度的优点,在光纤的表面修饰金黄色葡萄球菌(Staphylococcus Aureus Protein A,SPA),再将PCT单克隆抗体固定在SPA分子层,从而构成对PCT具有特异性检测功能的免疫传感器。实验结果表明:降钙素原含量为0.5ng/mL时,谐振波长红移约13pm;PCT的浓度为200ng/mL时,Ex-TFG的红移量基达约125pm;浓度为1 000ng/mL时,红移量趋于饱和,最大红移量约150pm。通过对实验数据拟合,发现Ex-TFG谐振波长的红移量与PCT浓度之间的关系满足Langmuir模型,相关性系数为0.98。该方法为低浓度PCT的检测提供了一种免标记、快速的检测方法。  相似文献   

7.
多探头光纤倏逝波生物传感器及其性能研究   总被引:8,自引:4,他引:8  
利用光纤倏逝波原理,以输出波长为635 nm的半导体激光器为光源,研制成功一台具有5个探头的光纤生物传感器.该传感器5个光纤探头对纯净Cy5荧光染料溶液的检测灵敏度均达0.01 nmol/L,在同一浓度下信噪比的相对标准偏差小于10%,5个探头的信噪比曲线几乎重合,且与商品化生物芯片扫描仪同时检测得到的结果一致;检测到了抗原抗体特异性反应的动态过程.本传感器具有较高的检测灵敏度、良好的响应一致性和生物特异性,可用于多重生物物质的检测.  相似文献   

8.
为了测量液位在警戒值附近变化的情况, 采用新款光纤熔接机制作了一种基于锥形结构的长周期光纤光栅测量液位的光纤传感器, 对传感器进行了理论分析, 搭建了液位传感实验系统, 根据传感器对外界环境的折射率灵敏度, 测量浸没在液体中的光纤长度。结果表明, 在0 mm~12 mm的液位测量范围内, 光纤液位传感器的峰值波长灵敏度和透射功率灵敏度分别是0.700 nm/mm和1.377 dB/nm。该传感器对液位变化测量较为准确, 且采用刻栅方式可有效解决传统长周期光纤光栅中存在的非对称模耦合和偏振依赖性高等问题, 同时具有制作简单、成本低和应用前景广泛等优点。  相似文献   

9.
为了实现对井下潜油电泵机组温度的实时监测,设计了一种由粗锥型单模--多模--单模(Coarse Cone Singlemode-Multimode-Singlemode, CCSMS)构成的马赫--曾德尔干涉(Mach-Zehnder Interferometer, MZI)型高温光纤传感器。该结构采用直接熔接的方法将单模光纤与多模光纤相熔接;接着通过调整熔接机的熔接参数,在单模光纤上制作出粗锥结构;最后将制备的结构嵌入铜基板的U型槽中,实现传感器的增敏封装。对封装后的传感器的温度响应特性进行了测试。实验结果表明,在40~250℃的温度范围内,该传感器实现了灵敏度为124.9 pm/℃的温度传感。对其稳定性和重复性进行了测试。结果表明,传感器的稳定性最大误差约为0.44%,重复性最大误差约为2.29 pm/℃。该传感器具有灵敏度高、重复性和稳定性好的特点,有望用于油气井下潜油电泵机组的温度监测。  相似文献   

10.
将单锥微纳光纤模式干涉仪和石墨烯相结合,实现了一种高灵敏度的光纤式氨气传感器,其利用石墨烯的特异性吸附效应及微纳光纤结构的高灵敏度传感特性,通过检测干涉光谱的漂移量实现了对氨气浓度微弱变化的检测.对不同组传感器进行了对比分析,结果表明当光纤直径为3.4μm时最大检测灵敏度为10.8 pm/ppm,与文献中采用其它光纤结构所报道的结果相比几乎提高了一倍.该传感器具有结构简单、易于实现及灵敏度高等优点,在危害气体浓度报警和人体健康检测等领域有潜在的应用前景.  相似文献   

11.
在石英晶体微天平的金电极上通过1,6-己二硫醇交联组装纳米金颗粒修饰传感器表面,同时结合蛋白A与抗体的Fc段特异性结合的特性定向固定人IgG构建压电免疫传感器,并用于羊抗人IgG的检测.实验结果表明,与未经修饰相比,纳米金颗粒组装修饰金电极后能明显提高压电免疫传感器的检测灵敏度、重现性和再生能力等重要性能指标,修饰后的传感器也具有非常好的在线再生性能.  相似文献   

12.
为了实现对基于全固光子带隙光纤(AS-PBF)的传感器的特性研究,采用了双锥型模式干涉仪的结构,使用熔接机在一根AS-PBF上间隔一段距离制作两个锥形光纤,制备出一种基于双锥型模式干涉的特种光纤传感器。与传统单模光纤或折射率传导的光子晶体不同,AS-PBF的纤芯有效折射率较低,而包层有效折射率较高。通过理论分析和实验验证,测量研究了这种光纤结构对温度和轴向应力的响应。实验结果表明,温度灵敏度和轴向应力灵敏度分别为~63pm/oC和~-1.74nm/ N。与长周期光栅、布拉格光栅相比,基于全固带隙光纤的双锥型模式干涉传感器具有制备简单、结构紧凑等优势,在光纤传感领域具有广泛的应用前景。  相似文献   

13.
光纤消逝场传感器传感结构的分析与应用   总被引:1,自引:0,他引:1  
罗吉  庄须叶  倪祖高  姚军 《微纳电子技术》2011,48(6):376-383,390
对光纤消逝场理论进行了详细分析,阐述了影响光纤消逝场传感器灵敏度的一些关键因素,并对几种常见的光纤消逝场传感光纤的优缺点进行了比较,主要包括圆柱形、D形、U形、锥形以及光子晶体光纤等结构的传感光纤。通过分析各种传感结构的光纤消逝场传感器的应用实例,归纳总结了提高光纤消逝场传感器传感灵敏度的一般方法,包括在传感光纤表面镀薄敏感膜或者金属膜、优化传感光纤结构、进行荧光标记以及用纳米粒子修饰等一系列措施。  相似文献   

14.
以生物微反应器中培养液pH在线监测为目标,研制出一种基于光度吸收原理的阵列光纤传感器。利用MEMS加工工艺,制备出传感器的阵列吸光池芯片,采用光学软件对吸光池进行优化设计,提高了传感器光传输效率,并通过CFD软件进行流体模拟,优化吸光池结构,降低了溶液死体积,缩短传感器响应时间。实验结果表明,所研究的传感器阵列检测灵敏度为0.83V/pH,响应速度快,可用于多个生物微反应器的pH在线监测。  相似文献   

15.
新型簧片式光纤加速度传感器研究   总被引:2,自引:1,他引:1  
研制了一种新型光纤加速度传感器。基于迈克尔逊干涉仪原理,采用了质量块和可 弯曲簧片结构,通过使用竖直 绕制传感光纤和横向绕制参考光纤的方式提高了加速度传感器的加速度灵敏度。实验测试了 其加速度灵敏度以及横向串扰。在簧片厚为1mm、质量块质量为208 g时,其加速度灵敏度 可达556rad/g(g为重力加速度);在噪声本底为10-4 rad/Hz 、加速度传感器工作频率为100Hz时,其可探测的最小加速度信号为 200ng/Hz(g为重力加速度)。采用该全金属结 构,传感器可更好地用于微弱信号检测。  相似文献   

16.
为了简化光纤压力传感器的制作方法,降低制作成本,提出了一种柔性基应变式无损光纤压力传器,将未进行过任何处理的单模光纤嵌入在两片柔性的聚二甲基硅氧烷(PDMS)薄膜中,制作成“三明治”结构压力传感器,采用光频域反射计(OFDR)技术进行解调,测试传感器在不同压力下的光谱漂移与光纤的微应变的关系。实验结果表明:在受力面积为 2.375 mm2 ,压力范围0~ 5kgf(0~ 20MPa)时,传感器的灵敏度达到194 /kgf,是裸单模光纤的6.47倍,同时压力测量范围提高5 倍,在0~ 2kgf(0~ 8MPa)范围内传感器具有很高的重复性与线性度,另外进行了分布式压力测试,证实传感器输出响应明显,空间分辨率较高。  相似文献   

17.
应力增敏的光纤布拉格光栅压强传感器   总被引:20,自引:6,他引:14  
提高光纤布拉格 (Bragg)光栅传感器响应灵敏度是提高光纤布拉格光栅传感系统检测精度的有效途径之一。基于弹性聚合物材料封装和金属波纹管封装对光纤布拉格光栅应力响应的增敏作用 ,提出了一种新颖的应力响应增敏的高灵敏度光纤布拉格光栅压强传感器模型。推导了该传感器的压强与布拉格波长相对偏移量之间的关系 ,给出了该传感器压强响应灵敏度系数的解析表达式。表明该传感器布拉格波长相对偏移量和压强之间具有良好的线性关系 ,同时也指出通过适当选择弹性体的弹性模量、波纹管弹性系数等特性参数 ,以及它们的尺寸 ,就可以方便地调整该传感器的压强响应灵敏度系数。该传感器压强响应灵敏度系数实验值高达 - 4 35× 10 -9Pa-1( -6 74nm/MPa) ,是裸光纤光栅压强响应灵敏度系数的 2 197倍 ,理论值为 - 4 6× 10 -9Pa-1,实验值与理论值吻合得很好  相似文献   

18.
光纤应变片的传感研究   总被引:4,自引:1,他引:3  
本文设计了基于光纤应变片的光纤应变传感器,方法基于测量粘贴于其上的光纤弯曲损耗来获取应变量和形变量。通过微位移架上的位移测量实验与悬臂梁上的应变测量实验,结果表明该光纤应变片提供了同时适合于应变与形变的检测方式。值得一提的是,该光纤应变片的应变响应灵敏度优于电阻应变片的应变响应。  相似文献   

19.
王帅  吴越  宋言明  李红  孟凡勇  祝连庆 《激光与红外》2021,51(11):1492-1497
提出一种基于法布里—珀罗(Fabry Perot,F P)干涉的光纤倾角传感器,该传感器由单模光纤和毛细管组成。首先,分析光纤干涉原理和倾角传感原理;然后,制作封装光纤倾角传感器;最后,完成光纤F P传感器倾斜实验,通过对采集得到的数据分析得到传感器倾角的响应特性,并进行温度实验探究温度对传感器波长漂移的影响。实验结果表明:在0°~10°测量范围内,测量角度和反射波长呈线性关系,倾角灵敏度为02031nm/°,线性度为099707;在45~49℃温度范围内,温度灵敏度为4777nm/℃,线性度为099934。该传感器具有结构简单、成本低、灵敏度高等特点,具有广阔的应用前景。  相似文献   

20.
该文介绍了一种基于马赫-则德尔干涉仪(MZI)与二甲基硅油(DSO)相结合的高灵敏度光纤温度传感器。传感器由 MZI及填充在其表面的 DSO 组成。MZI由单模光纤-锥形无芯光纤-单模光纤构成。填充 DSO 后, MZI的谐振峰向右有小的漂移。通过跟踪 MZI谐振峰波长随温度的变化,对环境温度进行测量。经测试,传感器的温度灵敏度为-97.7pm/℃,而未填充 DSO 的 MZI温度灵敏度为-50.1pm/℃,传感器灵敏度提高了约1.95 倍。该传感器具有结构制作简单,造价低及灵敏度高等优点,具有一定的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号