首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 485 毫秒
1.
研究了掺杂La2O3对ZnO-Pr6O11系压敏陶瓷的电性能和衰变特性的影响。试验结果表明:随La2O3添加量的增加,压敏电压(V1mA)和非线性系数(α)增加,漏电流(IL)减少。掺杂La2O3的ZnO-Pr6O11系压敏陶瓷性能稳定,具有良好的抗老化作用。  相似文献   

2.
(La,Nb)共掺杂TiO2压敏陶瓷中第二相的研究   总被引:1,自引:0,他引:1  
研究了(La,Nb)掺杂TiO2压敏陶瓷中第二相的转变及其对压敏性能的影响。采用实验方法研究了La2O3和Nb2O5的掺杂量及烧结温度对TiO2压敏陶瓷的压敏电压和非线性系数的影响。采用SEM、EPMA和XRD测试了TiO2陶瓷的显微结构、化学组成和物相。研究结果表明,(La,Nb)掺杂TiO2压敏陶瓷中存在第二相,随着烧结温度的增加,第二相会从LaNbO4向LaNbTiO6转变。根据La2O3-TiO2、La2O3-Nb2O5和Nb2O5-TiO2的二元相图,绘出了La2O3-Nb2O5-TiO2三元相图,在三元相图基础上初步估算了在不同烧结温度TiO2压敏陶瓷中第二相的相对含量。第二相LaNbTiO6的析出,导致钛空位(V″Ti″)浓度增大,而使压敏电压和非线性系数增加。  相似文献   

3.
该文在TiO2压敏陶瓷中掺杂CeO2,研究了烧结温度和CeO2掺杂量对TiO2基压敏陶瓷的电学性能的影响。结果表明,烧结温度为1 400℃、CeO2掺杂摩尔分数为1.0%时,TiO2基压敏陶瓷表现出较好的综合电学性能:压敏电压为7.7V/mm,非线性系数为3.8,漏电流为0.1A,且具有优的介电常数和介电损耗。  相似文献   

4.
研究了Ta2O5和Nb2O5掺杂对TiO2系压敏陶瓷电性能的影响。采用电子陶瓷制备工艺,制备了两组TiO2系压敏陶瓷,借助热电子发射理论,分析了样品的I-V特性及介电频谱特性。结果发现,Ta2O5掺杂的样品具有最低的压敏电压(E10mA=5.03 V.mm–1)和最大的视在介电常数(εra=1.5×105)。  相似文献   

5.
采用传统固相法制备稀土氧化物La2O3掺杂的ZnO压敏陶瓷。采用X线衍射(XRD)、扫描电子显微镜(SEM)和压敏电阻直流参数仪对样品的物相、显微组织及电性能进行分析。结果表明,随着La2O3掺杂量的增加,ZnO压敏陶瓷电位梯度单调递增,非线性系数先增加后减小,而漏电流呈现先减小后增大的变化趋势。综合衡量ZnO压敏电阻的各项性能指标发现,在1 000 ℃烧结温度下,La2O3的质量分数为0.25%时,ZnO压敏电阻的综合性能最好,其电位梯度为532.2 V/mm,非线性系数为41.6,漏电流为3.3 μA。  相似文献   

6.
采用传统氧化物陶瓷工艺制备了掺杂MnO2(摩尔分数0~1.5%)的ZnO-Pr6O11-Co2O3-Cr2O3(ZnPrCoCrO)基压敏陶瓷。利用XRD、SEM及I-V特性测试等表征了所制陶瓷的微观结构和电学特性。结果表明:1 350℃下烧结1 h所制掺杂0.5%MnO2的ZnPrCoCrO陶瓷具有最佳的高压压敏性能:相对密度为99%、非线性系数为110、压敏电压强度为2 840 V/mm、漏电流密度为11.4×10–6A/cm2。  相似文献   

7.
采用固相法制备了氧化物掺杂ZnO-Ba0.8Sr0.2TiO3复合陶瓷,并利用X射线衍射仪和扫描电子显微镜对其晶相及微观形貌进行了观测;另外,研究了氧化物掺杂对陶瓷介电性能及压敏性能的影响。结果表明,当掺杂摩尔分数为0.50%的Bi2O3和0.50%的Sb2O3时,陶瓷在室温下的εr为36402,tanδ为0.065;在此基础上继续掺入0.25%的MnO和0.35%的Cr2O3,陶瓷的非线性系数α为5.4,漏电流IL为1.5×10–6A/mm2,压敏电压为3.0V。Bi2O3、Sb2O3、MnO和Cr2O3掺杂使ZnO-Ba0.8Sr0.2TiO3复合陶瓷的介电性能和压敏性能同时得到了有效提高。  相似文献   

8.
采用传统电子陶瓷工艺制作了TiO2系压敏陶瓷。通过测试其I-V特性、复阻抗特性、晶界电阻、晶粒电阻及势垒高度,研究了Bi2O3对TiO2-Bi2O3-Nb2O5-SrO系压敏陶瓷微结构及电性能的影响。结果表明,Bi2O3的适当掺杂范围在0.3%~0.5%(摩尔分数)。其掺杂量的变化,可显著改变TiO2-Bi2O3-Nb2O5-SrO系压敏陶瓷的晶界电阻及势垒高度,进而对压敏陶瓷的电学非线性特性产生影响。当x(Bi2O3)为0.4%时,压敏陶瓷的V1mA与α分别为40V/mm与6.2。  相似文献   

9.
(Li,Nb)掺杂SnO2压敏材料的电学非线性研究   总被引:7,自引:3,他引:4  
研究了掺锂对SnO2压敏电阻器性能的影响.研究发现Li+对Sn4+的取代能明显提高陶瓷的烧结速度和致密度,且能大幅度改善材料的电学非线性性能.掺入x(Li2CO3)为1.0%的陶瓷样品具有最高的密度(P=6.77g/cm3)、最高的介电常数(ε=1851)、最低的视在势垒电场(EB=68.86V/mm)和最高的非线性常数(α=9.9).对比发现,Na+由于具有较大的离子粒半径,其掺杂改性性能相对较差.提出了SnO2@Li2CO3@Nb2O5晶界缺陷势垒模型.  相似文献   

10.
对SrTiO3陶瓷分别进行了La2O3和Sm2O3微量掺杂改性研究,观察了稀土掺杂后陶瓷样品的显微结构,研究了其介电损耗、相对介电常数及电容量变化率随测试温度变化的规律,分析了样品在不同测试电压下的绝缘特性。研究结果表明,La2O3和Sm2O3的微量掺杂对SrTiO3陶瓷的影响相似。稀土掺杂后,样品的晶粒尺寸变小,介电损耗增大,相对介电常数明显提高,电容量变化率明显改善,绝缘电阻明显减小。当稀土掺杂量高于0.2%(摩尔分数)时,La2O3的细晶效果比Sm2O3更明显。  相似文献   

11.
(La、Nb)共掺杂TiO2压敏陶瓷第二相形成机理   总被引:1,自引:0,他引:1  
研究了(La、Nb)共掺杂TiO2压敏陶瓷第二相的形成机理.以锐钛矿TiO2、Nb2Os和La2 O3氧化物粉体为原料,采用传统固相烧结工艺制备了( La、Nb)共掺杂TiO2压敏陶瓷,采用SEM、EDS、XRD、AFM和TEM检测了(La、Nb)共掺杂TiO2压敏陶瓷样品的显微结构、化学组成、物相组成、热蚀沟和显微形貌;通过点缺陷热力学分析、晶界能和材料结构检测分析讨论了(La、Nb)共掺杂TiO2压敏陶瓷第二相的形成机理.研究结果表明,第二相的形成起源于掺杂La3+和Nb5+在晶界的偏析,偏析驱动力为弹性应变能.偏析离子在高能量晶粒表面或晶界面成核,并逐渐长大形成第二相.第二相主要在能量较高的晶面上生长,这有利于使整个材料体系的能量最低.  相似文献   

12.
研究了TiO2掺杂对SnO2-Co2O3-Nb2O5系压敏陶瓷材料电学性能的影响。掺入x(TiO2)为1.00%的陶瓷样品具有最高的密度(r = 6.82 g/cm3),最高的视在势垒电场(EB= 476 V/mm),最高的非线性系数(a = 11.0),最小的相对介电常数。未掺杂的样品阻抗最大。随TiO2掺杂量的增加晶粒逐渐变小,晶粒尺寸的减小归因于未固溶于SnO2晶格而偏析在晶界上的TiO2阻碍相邻SnO2晶粒融合。为了解释SnO2-Co2O3-Nb2O5-TiO2系电学非线性性质的根源,对前人的晶界缺陷势垒模型进行了修正。  相似文献   

13.
采用传统固相反应法制备了(1-x)(Mg0.7Zn0.3)TiO3-x(Ca0.61La0.26)TiO3(MZCLT)微波介质陶瓷。分析了(Ca0.61La0.26)TiO3掺杂量对MZCLT陶瓷相结构、烧结性能和介电性能的影响。所制MZCLT陶瓷的主晶相为(Mg0.7Zn0.3)TiO3和(Ca0.61La0.26)TiO3,还存在微量的(Mg0.7Zn0.3)Ti2O5。当x=0.13,1275℃烧结4h时,0.87(Mg0.7Zn0.3)TiO3-0.13(Ca0.61La0.26)TiO3陶瓷介电性能较佳:εr=26.7,Q·f=86011GHz(8GHz),τf为-6×10-6/℃,优于(Mg0.7Zn0.3)TiO3陶瓷介电性能(εr=19.2,Q·f=253000GHz,τf为-39×10-6/℃)。  相似文献   

14.
Sr掺杂对TiO2系压敏陶瓷电性能的影响   总被引:2,自引:2,他引:0  
以TiO2为原材料,制备了具有压敏–电容复合功能的TiO2系压敏陶瓷材料。通过测试典型样品的V-I特性、D-f特性、电容特性及复阻抗频率谱,研究了不同掺Sr量的TiO2系压敏陶瓷材料的相关电学性质。实验结果表明,掺Sr量在强烈影响材料压敏性能的同时,对材料的电容特性也会产生较大影响。在掺Sr量为x (Sr)=0.6%时,样品表现出最好的压敏性质,其压敏电压为55 V/mm,a可达到5,1 kHz下损耗为0.1,相对介电常数可达2.8?05。  相似文献   

15.
采用传统固相反应法制备了(1-x)(Mg0.95Zn0.05)TiO3-x(La0.44Sr0.33)TiO3(MZLST)介质陶瓷。系统研究了(La0.44Sr0.33)TiO3掺杂量对MZLST陶瓷烧结特性、相构成、微观结构和微波介电性能的影响。结果表明,掺杂少量的(La0.44Sr0.33)TiO3后,MZLST陶瓷的主晶相为(Mg0.95Zn0.05)TiO3和(La0.44Sr0.33)TiO3,随着烧结温度的升高,第二相(Mg0.95Zn0.05)Ti2O5的含量增加。当x=0.10时,MZLST陶瓷在1 285℃烧结2h获得最佳的介电常数εr=22.17,品质因数Q.f=48 471GHz(6.72GHz),谐振频率温度系数τf=-7.99×10-6/℃。  相似文献   

16.
Dielectric Properties and Defect Structure of Bi—doped SrTiO3 Ceramics   总被引:1,自引:0,他引:1  
The dielectric properties of ceramics with composition of (Sr1-xBix) TiO3 x/2( where x=0.05-0.70) were measured at frequency of 1 MHz.The experimental results indicate that the dielectric properties of (Sr1-xBix)TiO3 x/2 system are greatly varied with an increase of the stoichiometric amounts of Bi2O3.The relative permittivity of the solid solutions is high, and the dissipation factor is low.The positron annihilation technique(PAT) was adopted to study the defect structure.An explanation of the dielectric properties of Bi-doped SrTiO3 ceramics has been suggested in terms of electron-compensation and vacancy or defect-compensation mechanisms and space-charge polarization mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号