首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxide/silver/oxide multilayers as semitransparent top electrode for small molecule organic solar cells (OSCs) are presented. It is shown that two oxide layers sandwiching a central metal layer greatly improve the stability and lifetime of the organic solar cell. Thermally evaporated MoO3, WO3, or V2O5 layers are employed as an interlayer for subsequent silver deposition and significantly change the morphology of the ultrathin silver layer, improving charge extraction and electrodes series resistance. The transmittance of the electrode is increased by introducing oxide or oxide and organic multilayers as capping layer, which leads to higher photocurrent generation in the absorber layer. Application of 1 nm MoO3/11 nm Ag/10 nm MoO3/50 nm Alq3 multilayer electrodes in OSCs lead to an efficiency of 2.6% for a standard ZnPc:C60 cell, showing superior performance compared to devices with pure silver top contacts. The device lifetime is also strongly increased. MoO3 layers can saturate and stabilize the inner and outer metal surface, passivating it against most of the degradation mechanisms. With such an oxide/silver/oxide multilayer electrode, the time until the glass encapsulated OSC is degraded to 80% of its starting efficiency is enhanced from 86 h to approximately 4500 h compared to an OSC without an oxide interlayer.  相似文献   

2.
The effects of anode/active layer interface modification in bulk‐heterojunction organic photovoltaic (OPV) cells is investigated using poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and/or a hole‐transporting/electron‐blocking blend of 4,4′‐bis[(p‐trichlorosilylpropylphenyl)‐phenylamino]biphenyl (TPDSi2) and poly[9,9‐dioctylfluorene‐coN‐[4‐(3‐methylpropyl)]‐diphenylamine] (TFB) as interfacial layers (IFLs). Current–voltage data in the dark and AM1.5G light show that the TPDSi2:TFB IFL yields MDMO‐PPV:PCBM OPVs with substantially increased open‐circuit voltage (Voc), power conversion efficiency, and thermal stability versus devices having no IFL or PEDOT:PSS. Using PEDOT:PSS and TPDSi2:TFB together in the same cell greatly reduces dark current and produces the highest Voc (0.91 V) by combining the electron‐blocking effects of both layers. ITO anode pre‐treatment was investigated by X‐ray photoelectron spectroscopy to understand why oxygen plasma, UV ozone, and solvent cleaning markedly affect cell response in combination with each IFL. O2 plasma and UV ozone treatment most effectively clean the ITO surface and are found most effective in preparing the surface for PEDOT:PSS deposition; UV ozone produces optimum solar cells with the TPDSi2:TFB IFL. Solvent cleaning leaves significant residual carbon contamination on the ITO and is best followed by O2 plasma or UV ozone treatment.  相似文献   

3.
Nanocrystal V2O5 dispersion processed thin films are introduced as efficient hole extraction interlayer in normal architecture P3HT:PCBM solar cells. Both thin and rather thick interlayers are studied and demonstrated to work properly in organic photovoltaic. Nanocrystal V2O5V2O5 layers effectively block electrons and effectively extract holes at the ITO anode. Very constant and high VOC (above 0.56 V) are easily achieved. Comparable JSC and PCE are demonstrated for nanocrystal dispersion-processed devices when compared with amorphous sol–gel processed devices. The excellent functionality of nanocrystal V2O5 interlayers in Si-PCPDTBT:PCBM devices further demonstrates the broad application potential of this material class for photovoltaic applications.  相似文献   

4.
To maximize the short‐circuit current density (JSC) and the open circuit voltage (VOC) simultaneously is a highly important but challenging issue in organic solar cells (OSCs). In this study, a benzotriazole‐based p‐type polymer (J61) and three benzotriazole‐based nonfullerene small molecule acceptors (BTA1‐3) are chosen to investigate the energetic driving force for the efficient charge transfer. The lowest unoccupied molecular orbital (LUMO) energy levels of small molecule acceptors can be fine‐tuned by modifying the end‐capping units, leading to high VOC (1.15–1.30 V) of OSCs. Particularly, the LUMO energy level of BTA3 satisfies the criteria for efficient charge generation, which results in a high VOC of 1.15 V, nearly 65% external quantum efficiency, and a high power conversion efficiency (PCE) of 8.25%. This is one of the highest VOC in the high‐performance OSCs reported to date. The results imply that it is promising to achieve both high JSC and VOC to realize high PCE with the carefully designed nonfullerene acceptors.  相似文献   

5.
Nanostructured layers of Cs2CO3 are shown to function very effectively as cathodes in organic electronic devices because of their good electron‐injection capabilities. Here, we report a comprehensive study of the origin of the low work function of nanostructured layers of Cs2CO3 prepared by solution deposition and thermal evaporation. The nanoscale Cs2CO3 layers are probed by various characterization methods including current–voltage (I–V) measurements, photovoltaic studies, X‐ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS), and impedance spectroscopy. It is found that thermally evaporated Cs2CO3 decomposes into CsO2 and cesium suboxides. The cesium suboxides dope CsO2, yielding a heavily doped n‐type semiconductor with an intrinsically low work function. As a result, devices fabricated using thermally evaporated Cs2CO3 are relatively insensitive to the choice of the cathode metal. The reaction of thermally evaporated Cs2CO3 with Al can further reduce the work function to 2.1 eV by forming an Al–O–Cs complex. Solution‐processed Cs2CO3 also reduces the work function of Au substrates from 5.1 to 3.5 eV. However, devices prepared using solution‐processed Cs2CO3 exhibit high efficiency only if a reactive metal such as Al or Ca is used as the cathode metal. A strong chemical reaction occurs between spin‐coated Cs2CO3 and thermally evaporated Al. An Al–O—Cs complex is formed as a result of this chemical reaction at the interface, and this layer significantly reduces the work function of the cathode. Finally, impedance spectroscopy results prove that this layer is highly conductive.  相似文献   

6.
In this work, sidechain engineering on conjugated fused‐ring acceptors for conformation locking is demonstrated as an effective molecular design strategy for high‐performance nonfullerene organic solar cells (OSCs). A novel nonfullerene acceptor (ITC6‐IC) is designed and developed by introducing long alkyl chains into the terminal electron‐donating building blocks. ITC6‐IC has achieved definite conformation with a planar structure and better solubility in common organic solvents. The weak electron‐donating hexyl upshifts the lowest unoccupied molecular orbital level of ITC6‐IC, resulting in a higher VOC in comparison to the widely used ITIC. The OSCs based on PBDB‐T:ITC6‐IC reveal a promising power conversion efficiency of 11.61% and an expected high VOC of 0.97 V. The weaker π–π stacking induced by steric hindrance affords ITC6‐IC with enhanced compatibility with polymer donors. The blend film treated with suitable thermal annealing exhibits a fibril crystallization feature with a good bicontinuous network morphology. The results indicate that the molecular design approach of ITC6‐IC can be inspirational for future development of nonfullerene acceptors for high efficiency OSCs.  相似文献   

7.
N‐type organic small molecules (SMs) are attracting attention in the organic electronics field, due to their easy purification procedures with high yield. However, only a few reports show SMs that perform well in both organic field‐effect transistors (OFETs) and organic solar cells (OSCs). Here, the synthesis and characterization of an n‐type small molecule with an indacenodithieno[3,2‐b]thiophene (IDTT) core unit and linear alkylated side chain (C16) (IDTTIC) are reported. Compared to the state‐of‐the‐art n‐type molecule IDTIC, IDTTIC exhibits smaller optical bandgap and higher absorption coefficient, which is due to the enhanced intramolecular effect. After mixing with the polymer donor PBDB‐T, IDTIC‐based solar cells deliver a power conversion efficiency of only 5.67%. In stark contrast, the OSC performance of IDTTIC improves significantly to 11.2%. It is found that the superior photovoltaic properties of PBDB‐T:IDTTIC blends are mainly due to reduced trap‐assisted recombination and enhanced molecular packing coherence length and higher domain purity when compared to IDTIC. Moreover, a significantly higher electron mobility of 0.50 cm2 V−1 s−1 for IDTTIC in OFET devices than for IDTIC (0.15 cm2 V−1 s−1) is obtained. These superior performances in OSCs and OFETs demonstrate that SMs with extended π‐conjugation of the backbone possess a great potential for application in organic electronic devices.  相似文献   

8.
Fully solution‐processed Al‐doped ZnO/silver nanowire (AgNW)/Al‐doped ZnO/ZnO multi‐stacked composite electrodes are introduced as a transparent, conductive window layer for thin‐film solar cells. Unlike conventional sol–gel synthetic pathways, a newly developed combustion reaction‐based sol–gel chemical approach allows dense and uniform composite electrodes at temperatures as low as 200 °C. The resulting composite layer exhibits high transmittance (93.4% at 550 nm) and low sheet resistance (11.3 Ω sq‐1), which are far superior to those of other solution‐processed transparent electrodes and are comparable to their sputtered counterparts. Conductive atomic force microscopy reveals that the multi‐stacked metal‐oxide layers embedded with the AgNWs enhance the photocarrier collection efficiency by broadening the lateral conduction range. This as‐developed composite electrode is successfully applied in Cu(In1‐x,Gax)S2 (CIGS) thin‐film solar cells and exhibits a power conversion efficiency of 11.03%. The fully solution‐processed indium‐free composite films demonstrate not only good performance as transparent electrodes but also the potential for applications in various optoelectronic and photovoltaic devices as a cost‐effective and sustainable alternative electrode.  相似文献   

9.
A graphene oxide (GO) film is functionalized with metal (Au) and metal‐oxide (MoOx) nanoparticles (NPs) as a hole‐extraction layer for high‐performance inverted planar‐heterojunction perovskite solar cells (PSCs). These NPs can increase the work function of GO, which is confirmed with X‐ray photoelectron spectra, Kelvin probe force microscopy, and ultraviolet photoelectron spectra measurements. The down‐shifts of work functions lead to a decreased level of potential energy and hence increased Voc of the PSC devices. Although the GO‐AuNP film shows rapid hole extraction and increased Voc, a Jsc improvement is not observed because of localization of the extracted holes inside the AuNP that leads to rapid charge recombination, which is confirmed with transient photoelectric measurements. The power conversion efficiency (PCE) of the GO‐AuNP device attains 14.6%, which is comparable with that of the GO‐based device (14.4%). In contrast, the rapid hole extraction from perovskite to the GO‐MoOx layer does not cause trapping of holes and delocalization of holes in the GO film accelerates rapid charge transfer to the indium tin oxide substrate; charge recombination in the perovskite/GO‐MoOx interface is hence significantly retarded. The GO‐MoOx device consequently shows significantly enhanced Voc and Jsc, for which its device performance attains PCE of 16.7% with great reproducibility and enduring stability.  相似文献   

10.
Enhanced performance of n‐channel organic field‐effect transistors (OFETs) is demonstrated by introducing a titanium sub‐oxide (TiOx) injection layer. The n‐channel OFETs utilize [6,6]‐phenyl‐C61 butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71 butyric acid methyl ester (PC71BM) as the semiconductor in the channel. With the TiOx injection layer, the electron mobilities of PC61BM and PC71BM FET using Al as source/drain electrodes are comparable to those obtained from OFETs using Ca as the source/drain electrodes. Direct measurement of contact resistance (Rc) shows significantly decreased Rc values for FETs with the TiOx layer. Ultraviolet photoelectron spectroscopy (UPS) studies demonstrate that the TiOx layer reduces the electron injection barrier because of the relatively strong interfacial dipole of TiOx. In addition to functioning as an electron injection layer that eliminates the contact resistance, the TiOx layer acts as a passivation layer that prevents penetration of O2 and H2O; devices with the TiOx injection layer exhibit a significant improvement in lifetime when exposed to air.  相似文献   

11.
This work demonstrates the stability and degradation of OSCs based on poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′ benzothiadiazole)] (PCDTBT): (6,6)-Phenyl C71 butyric acid methyl ester (PC71BM) photoactive blend layers as a function of ageing time in air. Analysis of the stability and degradation process for the OSCs was conducted under ambient air by using current-voltage (I-V) measurements and x-ray photoelectron spectroscopy (XPS). The interface between photoactive layer and HTL (PEDOT:PSS) was also investigated. Device stability was investigated by calculating decay in power conversion efficiency (PCE) as a function of ageing time in the air. The PCE of devices decrease from 5.17 to 3.61% in one week of fabrication, which is attributed to indium and oxygen migration into the PEDOT:PSS and PCDTBT:PC71BM layer. Further, after aging for 1000 h, XPS spectra confirm the significant diffusion of oxygen into the HTL and photoactive layer which increased from 3.0 and 23.3% to 20.4 and 35.7% in photoactive layer and HTL, respectively. Similarly, the indium content reached to 17.9% on PEDOT:PSS surface and 0.4% on PCDTBT:PC71BM surface in 1000 h. Core-level spectra of active layer indicate the oxidation of carbon atoms in the fullerene cage, oxidation of nitrogen present in the polymer matrix and formation of In2O3 due to indium diffusion. We also observed a steady fall in the optical absorption of the active layer during ageing in ambient air and it reduced to 76.5% of initial value in 1000 h. On the basis of these experimental results, we discussed key parameters that account for the degradation process and stability of OSCs in order to improve the device performance.  相似文献   

12.
Interlayers in organic solar cells (OSCs) are used to reduce energy barriers for charge injection/extraction, act as optical spacers, introduce carrier selectivity and increase organic/contact compatibility. To date, the most widely used inorganic interlayers are metal oxides such as TiO2 and ZnO. However, these materials require harsh deposition conditions that could damage the organic active layers, and hence are generally used in inverted devices. Here we show, for the first time, that judicious selection of materials and processing conditions allow the use of an atomic layer deposition (ALD) system to deposit thin conformal ZnO interlayers on bulk heterojunctions (BHJs). ALD-ZnO interlayers were utilized as electron transporting layers (ETLs) in OSCs and compared to similar devices with solution deposited ZnO nanoparticle (np) ETLs. OSCs with ALD-ZnO ETLs exhibited higher photocurrent densities, Jsc, but lower open circuit voltages, Voc. The low Voc is associated with the presence of pinholes and an offset between the ALD-ZnO and PC70BM electron conducting states. This offset results from traps and acceptor sites generated during the low temperature ALD process. To recover the Voc we introduced a fluorinated phosphonic acid (PA) additive to the blend. We suggest that the additive migrates to the film surface, interacts with the ZnO to produce a denser layer and to passivate traps, effectively improving the device shunt resistance and energy level alignment and increasing Voc. Overall, the devices with PA and ALD-ZnO ETLs possess significantly higher power conversion efficiencies (PCEs) than those with np-ZnO ETLs. For example, the champion ALD-ZnO device PCE is 3.5%, while that with np-ZnO is 2.75%.  相似文献   

13.
Solution-processed vanadium oxide (V2O5) as an anode interlayer is introduced between the organic layer and the Ag electrode for improving the performance of the low-cost inverted polymer solar cells hybridized with ZnO nanorods. Our investigations indicate that the solution-processed V2O5 interlayer as an electron-blocking layer can effectively prevent the leakage current at the organic/Ag interface. The power conversion efficiency is improved from 2.5% to 3.56% by the introduction of the V2O5 interlayer. The V2O5 interlayer also serves as an optical spacer to enhance light absorption, and thereby increases the photocurrent. Compared to the vacuum-deposited techniques, the fabrication of the solution-processed V2O5 interlayer is simple and effective. The solution-based approach makes it attractive for applications to mass production and potentially printed organic electronics.  相似文献   

14.
The detailed characterization of solution‐derived nickel (II) oxide (NiO) hole‐transporting layer (HTL) films and their application in high efficiency organic photovoltaic (OPV) cells is reported. The NiO precursor solution is examined in situ to determine the chemical species present. Coordination complexes of monoethanolamine (MEA) with Ni in ethanol thermally decompose to form non‐stoichiometric NiO. Specifically, the [Ni(MEA)2(OAc)]+ ion is found to be the most prevalent species in the precursor solution. The defect‐induced Ni3+ ion, which is present in non‐stoichiometric NiO and signifies the p‐type conduction of NiO, as well as the dipolar nickel oxyhydroxide (NiOOH) species are confirmed using X‐ray photoelectron spectroscopy. Bulk heterojunction (BHJ) solar cells with a polymer/fullerene photoactive layer blend composed of poly‐dithienogermole‐thienopyrrolodione (pDTG‐TPD) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) are fabricated using these solution‐processed NiO films. The resulting devices show an average power conversion efficiency (PCE) of 7.8%, which is a 15% improvement over devices utilizing a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL. The enhancement is due to the optical resonance in the solar cell and the hydrophobicity of NiO, which promotes a more homogeneous donor/acceptor morphology in the active layer at the NiO/BHJ interface. Finally, devices incorporating NiO as a HTL are more stable in air than devices using PEDOT:PSS.  相似文献   

15.
An optimized four‐layer tailored‐ and low‐refractive index anti‐reflection (AR) coating on an inverted metamorphic (IMM) triple‐junction solar cell device is demonstrated. Due to an excellent refractive index matching with the ambient air by using tailored‐ and low‐refractive index nanoporous SiO2 layers and owing to a multiple‐discrete‐layer design of the AR coating optimized by a genetic algorithm, such a four‐layer AR coating shows excellent broadband and omnidirectional AR characteristics and significantly enhances the omnidirectional photovoltaic performance of IMM solar cell devices. Comparing the photovoltaic performance of an IMM solar cell device with the four‐layer AR coating and an IMM solar cell with the conventional SiO2/TiO2 double layer AR coating, the four‐layer AR coating achieves an angle‐of‐incidence (AOI) averaged short‐circuit current density, JSC, enhancement of 34.4%, whereas the conventional double layer AR coating only achieves an AOI‐averaged JSC enhancement of 25.3%. The measured reflectance reduction and omnidirectional photovoltaic performance enhancement of the four‐layer AR coating are to our knowledge, the largest ever reported in the literature of solar cell devices.  相似文献   

16.
π‐conjugated polymers based on the electron‐neutral alkoxy‐functionalized thienyl‐vinylene (TVTOEt) building‐block co‐polymerized, with either BDT (benzodithiophene) or T2 (dithiophene) donor blocks, or NDI (naphthalenediimide) as an acceptor block, are synthesized and characterized. The effect of BDT and NDI substituents (alkyl vs alkoxy or linear vs branched) on the polymer performance in organic thin film transistors (OTFTs) and all‐polymer organic photovoltaic (OPV) cells is reported. Co‐monomer selection and backbone functionalization substantially modifies the polymer MO energies, thin film morphology, and charge transport properties, as indicated by electrochemistry, optical spectroscopy, X‐ray diffraction, AFM, DFT calculations, and TFT response. When polymer P7 is used as an OPV acceptor with PTB7 as a donor, the corresponding blend yields TFTs with ambipolar mobilities of μe = 5.1 × 10?3 cm2 V–1 s–1 and μh = 3.9 × 10?3 cm2 V–1 s–1 in ambient, among the highest mobilities reported to date for all‐polymer bulk heterojunction TFTs, and all‐polymer solar cells with a power conversion efficiency (PCE) of 1.70%, the highest reported PCE to date for an NDI‐polymer acceptor system. The stable transport characteristics in ambient and promising solar cell performance make NDI‐type materials promising acceptors for all‐polymer solar cell applications.  相似文献   

17.
Here, a facial and scalable method for efficient exfoliation of bulk transition metal dichalcogenides (TMD) and graphite in aqueous solution with poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to prepare single‐ and few‐layer nanosheets is demonstrated. Importantly, these TMD nanosheets retain the single crystalline characteristic, which is essential for application in organic solar cells (OSCs). The hybrid PEDOT:PSS/WS2 ink prepared by a simple centrifugation is directly integrated as a hole extraction layer for high‐performance OSCs. Compared with PEDOT:PSS, the PEDOT:PSS/WS2‐based devices provide a remarkable power conversion efficiency due to the “island” morphology and benzoid–quinoid transition. This study not only demonstrates a novel method for preparing single‐ and few‐layer TMD and graphene nanosheets but also paves a way for their applications without further complicated processing.  相似文献   

18.
Low‐temperature‐processed inverted perovskite solar cells (PVSCs) attract increasing attention because they can be fabricated on both rigid and flexible substrates. For these devices, hole‐transporting layers (HTLs) play an important role in achieving efficient and stable inverted PVSCs by adjusting the anodic work function, hole extraction, and interfacial charge recombination. Here, the use of a low‐temperature (≤150 °C) solution‐processed ultrathin film of poly[(9,9‐dioctyl‐fluorenyl‐2,7‐diyl)‐co‐(4,4′‐(N‐(4‐secbutylphenyl) diphenylamine)] (TFB) is reported as an HTL in one‐step‐processed CH3NH3PbI3 (MAPbI3)‐based inverted PVSCs. The fabricated device exhibits power conversion efficiency (PCE) as high as 20.2% when measured under AM 1.5 G illumination. This PCE makes them one of the MAPbI3‐based inverted PVSCs that have the highest efficiency reported to date. Moreover, this inverted PVSC also shows good stability, which can retain 90% of its original efficiency after 30 days of storage in ambient air.  相似文献   

19.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

20.
Composite cathodes of solid oxide fuel cells (SOFCs) are normally fabricated by mechanical mixing of electronic‐ and ionic‐conducting phases. Here, a dual‐phase SOFC cathode, composed of perovskite PrNi0.5Mn0.5O3 (PNM) and exsoluted fluorite PrOx particles, produced in situ through a glycine–nitrate solution combustion process, is reported. When applied as the cathode for a BaZr0.1Ce0.7Y0.1Yb0.1O3‐based protonic ceramic fuel cell, the hybrid cathode displays excellent electrocatalytic activity (area‐specific resistance of 0.052 Ω cm2 at 700 °C) and remarkable long‐term stability when operated at a cell voltage of 0.7 V for ≈500 h using H2 as fuel and ambient air as oxidant. The excellent performance is attributed to the proton‐conducting BaPrO3‐based coating and high‐concentration oxygen vacancies of a Ba‐doped PNM surface coating, produced by the reaction between the cathode and Ba from the electrolyte (via evaporation or diffusion), as confirmed by detailed X‐ray photoelectron spectroscopy, Raman spectroscopy, and density functional theory‐based calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号