首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Realization of sensing multidirectional strains is essential to understanding the nature of complex motions. Traditional uniaxial strain sensors lack the capability to detect motions working in different directions, limiting their applications in unconventional sensing technology areas, like sophisticated human–machine interface and real‐time monitoring of dynamic body movements. Herein, a stretchable multidirectional strain sensor is developed using highly aligned, anisotropic carbon nanofiber (ACNF) films via a facile, low‐cost, and scalable electrospinning approach. The fabricated strain sensor exhibits semitransparency, good stretchability of over 30%, outstanding durability for over 2500 cycles, and remarkable anisotropic strain sensing performance with maximum gauge factors of 180 and 0.3 for loads applied parallel and perpendicular to fiber alignment, respectively. Cross‐plied ACNF strain sensors are fabricated by orthogonally stacking two single‐layer ACNFs, which present a unique capability to distinguish the directions and magnitudes of strains with a remarkable selectivity of 3.84, highest among all stretchable multidirectional strain sensors reported so far. Their unconventional applications are demonstrated by detecting multi‐degrees‐of‐freedom synovial joint movements of the human body and monitoring wrist movements for systematic improvement of golf performance. The potential applications of novel multidirectional sensors reported here may shed new light into future development of next‐generation soft, flexible electronics.  相似文献   

2.
2 nm thin gold nanowires (AuNWs) have extremely high aspect ratio (≈10 000) and are nanoscale soft building blocks; this is different from conventional silver nanowires (AgNWs), which are more rigid. Here, highly sensitive, stretchable, patchable, and transparent strain sensors are fabricated based on the hybrid films of soft/hard networks. They are mechanically stretchable, optically transparent, and electrically conductive and are fabricated using a simple and cost‐effective solution process. The combination of soft and more rigid nanowires enables their use as high‐performance strain sensors with the maximum gauge factor (GF) of ≈236 at low strain (<5%), the highest stretchability of up to 70% strain, and the optical transparency is from 58.7% to 66.7% depending on the amount of the AuNW component. The sensors can detect strain as low as 0.05% and are energy efficient to operate at a voltage as low as 0.1 V. These attributes are difficult to achieve with a single component of either AuNWs or AgNWs. The outstanding sensing performance indicates their potential applications as “invisible” wearable sensors for biometric information collection, as demonstrated in applications for detecting facial expressions, respiration, and apexcardiogram.  相似文献   

3.
Stretchable physical sensors that can detect and quantify human physiological signals such as temperature, are essential to the realization of healthcare devices for biomedical monitoring and human–machine interfaces. Despite recent achievements in stretchable electronic sensors using various conductive materials and structures, the design of stretchable sensors in optics remains a considerable challenge. Here, an optical strategy for the design of stretchable temperature sensors, which can maintain stable performance even under a strain deformation up to 80%, is reported. The optical temperature sensor is fabricated by the incorporation of thermal‐sensitive upconversion nanoparticles (UCNPs) in stretchable polymer‐based optical fibers (SPOFs). The SPOFs are made from stretchable elastomers and constructed in a step‐index core/cladding structure for effective light confinements. The UCNPs, incorporated in the SPOFs, provide thermal‐sensitive upconversion emissions at dual wavelengths for ratiometric temperature sensing by near‐infrared excitation, while the SPOFs endow the sensor with skin‐like mechanical compliance and excellent light‐guiding characteristics for laser delivery and emission collection. The broad applications of the proposed sensor in real‐time monitoring of the temperature and thermal activities of the human body, providing optical alternatives for wearable health monitoring, are demonstrated.  相似文献   

4.
This report demonstrates a wearable elastomer‐based electronic skin including resistive sensors for monitoring finger articulation and capacitive tactile pressure sensors that register distributed pressure along the entire length of the finger. Pressure sensitivity in the order of 0.001 to 0.01 kPa?1 for pressures from 5 to 405 kPa, which includes much of the range of human physiological sensing, is achieved by implementing soft, compressible silicone foam as the dielectric and stretchable thin‐metal films. Integrating these sensors in a textile glove allows the decoupling of the strain and pressure cross‐sensitivity of the tactile sensors, enabling precise grasp analysis. The sensorized glove is implemented in a human‐in‐the‐loop system for controlling the grasp of objects, a critical step toward hand prosthesis with integrated sensing capabilities.  相似文献   

5.
Sensing strain of soft materials in small scale has attracted increasing attention. In this work, graphene woven fabrics (GWFs) are explored for highly sensitive sensing. A flexible and wearable strain sensor is assembled by adhering the GWFs on polymer and medical tape composite film. The sensor exhibits the following features: ultra‐light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication, ease to follow human skin deformation, and so on. Some weak human motions are chosen to test the notable resistance change, including hand clenching, phonation, expression change, blink, breath, and pulse. Because of the distinctive features of high sensitivity and reversible extensibility, the GWFs based piezoresistive sensors have wide potential applications in fields of the displays, robotics, fatigue detection, body monitoring, and so forth.  相似文献   

6.
The performance of flexible and stretchable sensors relies on the optimization of both the flexible substrate and the sensing element, and their synergistic interactions. Herein, a novel strategy is reported for cost‐effective and scalable manufacturing of a new class of porous materials as 3D flexible and stretchable piezoresistive sensors, by assembling carbon nanotubes onto porous substrates of tunable Poisson ratios. It is shown that the piezoresistive sensitivity of the sensors increases as the substrate's Poisson's ratio decreases. Substrates with negative Poisson ratios (auxetic foams) exhibit significantly higher piezoresistive sensitivity, resulting from the coherent mode of deformation of the auxetic foam and enhanced changes of tunneling resistance of the carbon nanotube networks. Compared with conventional foam sensors, the auxetic foam sensor (AFS) with a Poisson's ratio of –0.5 demonstrates a 300% improvement in piezoresistive sensitivity and the gauge factor increases as much as 500%. The AFS has high sensing capability, is extremely robust, and capable of multimodal sensing, such as large deformation sensing, pressure sensing, shear/torsion sensing, and underwater sensing. AFS shows great potential for a broad range of wearable and portable devices applications, which are described by reporting on a series of demonstrations.  相似文献   

7.
Digital health facilitated by wearable/portable electronics and big data analytics holds great potential in empowering patients with real‐time diagnostics tools and information. The detection of a majority of biomarkers at trace levels in body fluids using mobile health (mHealth) devices requires bioaffinity sensors that rely on “bioreceptors” for specific recognition. Portable point‐of‐care testing (POCT) bioaffinity sensors have demonstrated their broad utility for diverse applications ranging from health monitoring to disease diagnosis and management. In addition, flexible and stretchable electronics‐enabled wearable platforms have emerged in the past decade as an interesting approach in the ambulatory collection of real‐time data. Herein, the technological advancements of mHealth bioaffinity sensors evolved from laboratory assays to portable POCT devices, and to wearable electronics, are synthesized. The involved recognition events in the mHealth affinity biosensors enabled by bioreceptors (e.g., antibodies, DNAs, aptamers, and molecularly imprinted polymers) are discussed along with their transduction mechanisms (e.g., electrochemical and optical) and system‐level integration technologies. Finally, an outlook of the field is provided and key technological bottlenecks to overcome identified, in order to achieve a new sensing paradigm in wearable bioaffinity platforms.  相似文献   

8.
Stretchability and sensitivity are essential properties of wearable electronics for effective motion monitoring. In general, increasing the sensitivity of strain sensors based on ionic conductors trades off elasticity, which results in low sensitivity of the strain sensors at large mechanical deformations. To address this, ion-permeable conducting polymer electrodes with low contact resistance are utilized in ionic gel-based strain sensors. Using a rectangular-shaped ionic gel and ion-permeable electrodes significantly increase the gauge factor of the strain sensor, similar to the theoretical value at a given strain. To further increase the sensitivity of the strain sensor, the ionic gel is patterned with zigzagged tracks that gap apart as the gel stretches, and the gaps close as the gel contracts, leading to a large variation in the relative resistance upon stretching. By combining the zigzagged ionic gel and the ion-permeable electrodes, highly sensitive stretchable sensors are realized with a record-high gauge factor of 173, compared to existing ionic conductor-based stretchable strain sensors. The zigzag-patterned ionic sensor can successfully monitor various motions when attached to the human body. These results are expected to afford promising strategies for developing highly sensitive, stretchable sensing systems for E-skin sensors and soft robotics.  相似文献   

9.
Point-of-care testing (POC) has the ability to detect chronic and infectious diseases early or at the time of occurrence and provide a state-of-the-art personalized healthcare system. Recently, wearable and flexible sensors have been employed to analyze sweat, glucose, blood, and human skin conditions. However, a flexible sensing system that allows for the real-time monitoring of throat-related illnesses, such as salivary parotid gland swelling caused by flu and mumps, is necessary. Here, for the first time, a wearable, highly flexible, and stretchable piezoresistive sensing patch based on carbon nanotubes (CNTs) is reported, which can record muscle expansion or relaxation in real-time, and thus act as a next-generation POC sensor. The patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. The actual extent of muscle expansion is calculated and the gauge factor for applications entailing volumetric deformations is redefined. Additionally, a bluetooth-low-energy system that tracks muscle activity in real-time and transmits the output signals wirelessly to a smartphone app is utilized. Numerical calculations verify that the low stress and strain lead to excellent mechanical reliability and repeatability. Finally, a dummy muscle is inflated using a pneumatic-based actuator to demonstrate the application of the affixed wearable next-generation POC sensor.  相似文献   

10.
Stretchable/wearable strain sensors are attracting growing interest due to their broad applications in physical and physiological measurements. However, the development of a multifunctional highly stretchable sensor satisfying the requirements of ultrahigh sensitivity (able to distinguish sound frequency) remains a challenge. An ultrasensitive and highly stretchable multifunctional strain sensor with timbre‐recognition ability based on high‐crack‐density vertical graphene (VGr) is fabricated using an ultrasonic peeling (UP) method. It can distinguish frequencies of sounds higher than 2500 Hz. Detailed microscopic examinations reveal that their ultrahigh sensitivity stems from the formation of high‐density nanocracks in the graphitic base layer, which is bridged by the top branched VGr nanowalls. These nanocracks cut the VGr film into a large number of nanopieces, which increase the natural frequency of the sensors, enabling the sensors to distinguish the sound frequency. Demonstrations are presented to highlight the sensors' potential as wearable devices for human physiological signal and timbre detections. This is the first multifunctional highly stretchable strain sensor with timbre‐recognition ability.  相似文献   

11.
With the development of wearable electronics, the use of engineered functional inks with printing technologies has attracted attention owing to its potential for applications in low-cost, high-throughput, and high-performance devices. However, the improvement in conductivity and stretchability in the mass production of inks is still a challenge for practical use in wearable applications. Herein, a scalable and efficient fluid dynamics process that produces highly stretchable, conductive, and printable inks containing a high concentration of graphene is reported. The resulting inks, in which the uniform incorporation of exfoliated graphene flakes into a viscoelastic thermoplastic polyurethane is employed, facilitated the screen-printing process, resulting in high conductivity and excellent electromechanical stability. The electrochemical analysis of a stretchable sodium ion sensor based on a serpentine-structured pattern results in excellent electrochemical sensing performance even under strong fatigue tests performed by repeated stretching (300% strain) and release cycles. To demonstrate the practical use of the proposed stretchable conductor, on-body tests are carried out in real-time to monitor the sweat produced by a volunteer during simultaneous physical stretching and stationary cycling. These functional graphene inks have attractive performance and offer exciting potential for a wide range of flexible and wearable electronic applications.  相似文献   

12.
Fluidic soft sensors have been widely used in wearable devices for human motion capturing. However, thus far, the biocompatibility of the conductive liquid, the linearity of the sensing signal, and the hysteresis between the loading and release processes have limited the sensing quality as well as the applications of these sensors. In this paper, silicone based strain and force sensors composed of a novel biocompatible conductive liquid (potassium iodide and glycerol solution) are introduced. The strain sensors exhibit negligible hysteresis up to 5 Hz, with a gauge factor of 2.2 at 1 Hz. The force sensors feature a novel multifunctional layered structure, with microcylinder‐filled channels to achieve high linearity, low hysteresis (5.3% hysteresis at 1 Hz), and good sensitivity (100% resistance increase at a 5 N load). The sensors' gauge factors are stable at various temperatures and humidity levels. These biocompatible, low hysteresis, and high linearity sensors are promising for safe and reliable diagnostic devices, wearable motion capture, and compliant human–computer interfaces.  相似文献   

13.
Transparent electrodes have been widely used for various electronics and optoelectronics, including flexible ones. Many nanomaterial‐based electrodes, in particular 1D and 2D nanomaterials, have been proposed as next‐generation transparent and flexible electrodes. However, their transparency, conductivity, large‐area uniformity, and sometimes cost are not yet sufficient to replace indium tin oxide (ITO). Furthermore, the conventional ITO is quite rigid and susceptible to mechanical fractures under deformations (e.g., bending, folding). In this study, the authors report new advances in the design, fabrication, and integration of wearable and transparent force touch (touch and pressure) sensors by exploiting the previous efforts in stretchable electronics as well as novel ideas in the transparent and flexible electrode. The optical and mechanical experiment, along with simulation results, exhibit the excellent transparency, conductivity, uniformity, and flexibility of the proposed epoxy‐copper‐ITO (ECI) multilayer electrode. By using this multi‐layered ECI electrode, the authors present a wearable and transparent force touch sensor array, which is multiplexed by Si nanomembrane p‐i‐n junction‐type (PIN) diodes and integrated on the skin‐mounted quantum dot light‐emitting diodes. This novel integrated system is successfully applied as a wearable human–machine interface (HMI) to control a drone wirelessly. These advances in novel material structures and system‐level integration strategies create new opportunities in wearable smart displays.  相似文献   

14.
Highly conductive and stretchable fibers are crucial components of wearable electronics systems. Excellent electrical conductivity, stretchability, and wearability are required from such fibers. Existing technologies still display limited performances in these design requirements. Here, achieving highly stretchable and sensitive strain sensors by using a coaxial structure, prepared via coaxial wet spinning of thermoplastic elastomer‐wrapped carbon nanotube fibers, is proposed. The sensors attain high sensitivity (with a gauge factor of 425 at 100% strain), high stretchability, and high linearity. They are also reproducible and durable. Their use as safe sensing components on deformable cable, expandable surfaces, and wearable textiles is demonstrated.  相似文献   

15.
Promoted by the demand for wearable devices, graphene has been proved to be a promising material for potential applications in flexible and highly sensitive strain sensors. However, low sensitivity and complex processing of graphene retard the development toward the practical applications. Here, an environment‐friendly and cost‐effective method to fabricate large‐area ultrathin graphene films is proposed for highly sensitive flexible strain sensor. The assembled graphene films are derived rapidly at the liquid/air interface by Marangoni effect and the area can be scaled up. These graphene‐based strain sensors exhibit extremely high sensitivity with gauge factor of 1037 at 2% strain, which represents the highest value for graphene platelets at this small deformation so far. This simple fabrication for strain sensors with highly sensitive performance of strain sensor makes it a novel approach to applications in electronic skin, wearable sensors, and health monitoring platforms.  相似文献   

16.
Recent technological advances in nanomaterials have driven the development of high‐performance light‐emitting devices with flexible and stretchable form factors. Deformability in such devices is mainly achieved by replacing the rigid materials in the device components with flexible nanomaterials and their assemblies (e.g., carbon nanotubes, silver nanowires, graphene, and quantum dots) or with intrinsically soft materials and their composites (e.g., polymers and elastomers). Downscaling the dimensions of the functional materials to the nanometer range dramatically decreases their flexural rigidity, and production of polymer/elastomer composites with functional nanomaterials provides light‐emitting devices with flexibility and stretchability. Furthermore, monolithic integration of these light‐emitting devices with deformable sensors furnishes the resulting display with various smart functions such as force/capacitive touch‐based data input, personalized health monitoring, and interactive human–machine interfacing. These ultrathin, lightweight, and deformable smart optoelectronic devices have attracted widespread interest from materials scientists and device engineers. Here, a comprehensive review of recent progress concerning these flexible and stretchable smart displays is presented with a focus on materials development, fabrication techniques, and device designs. Brief overviews of an integrated system of advanced smart displays and cutting‐edge wearable sensors are also presented, and, to conclude, a discussion of the future research outlook is given.  相似文献   

17.
Highly sensitive, wearable and durable strain sensors are vital to the development of health monitoring systems, smart robots and human machine interfaces. The recent sensor fabrication progress is respectable, but it is limited by complexity, low sensitivity and unideal service life. Herein a facile, cost‐effective and scalable method is presented for the development of high‐performance strain sensors and stretchable conductors based on a composite film consisting of graphene platelets (GnPs) and silicon rubber. Through calculation by the tunneling theory using experimental data, the composite film has demonstrated ideal linear and reproducible sensitivity to tensile strains, which is contributed by the superior piezoresistivity of GnPs having tunable gauge factors 27.7–164.5. The composite sensors fabricated in different days demonstrate pretty similar performance, enabling applications as a health‐monitoring device to detect various human motions from finger bending to pulse. They can be used as electronic skin, a vibration sensor and a human‐machine interface controller. Stretchable conductors are made by coating and encapsulating GnPs with polydimethyl siloxane to create another composite; this structure allows the conductor to be readily bent and stretched with sufficient mechanical robustness and cyclability.  相似文献   

18.
Ionic tactile sensors (ITS) represent a new class of deformable sensory platforms that mimic not only the tactile functions and topological structures but also the mechanotransduction mechanism across the biological ion channels in human skin, which can demonstrate a more advanced biological interface for targeting emerging human‐interactive technologies compared to conventional e‐skin devices. Recently, flexible and even stretchable ITS have been developed using novel structural designs and strategies in materials and devices. These skin‐like tactile sensors can effectively sense pressure, strain, shear, torsion, and other external stimuli with high sensitivity, high reliability, and rapid response beyond those of human perception. In this review, the recent developments of the ITS based on the novel concepts, structural designs, and strategies in materials innovation are entirely highlighted. In particular, biomimetic approaches have led to the development of the ITS that extend beyond the tactile sensory capabilities of human skin such as sensitivity, pressure detection range, and multimodality. Furthermore, the recent progress in self‐powered and self‐healable ITS, which should be strongly required to allow human‐interactive artificial sensory platforms is reviewed. The applications of ITS in human‐interactive technologies including artificial skin, wearable medical devices, and user‐interactive interfaces are highlighted. Last, perspectives on the current challenges and the future directions of this field are presented.  相似文献   

19.
In recent decades, flexible and wearable devices have been extensively investigated due to their promising applications in portable mobile electronics and human motion monitoring. MXene, a novel growing family of 2D nanomaterials, demonstrates superiorities such as outstanding electrical conductivity, abundant terminal groups, unique layered-structure, large surface area, and hydrophilicity, making it to be a potential candidate material for flexible and wearable devices. Numerous pioneering works are devoted to develop flexible MXene-based composites with various functions and designed structures. Therefore, the latest progress of the flexible MXene-based composites for wearable devices is summarized in this review, focusing on the preparation strategies, working mechanisms, performances, and applications in sensors, supercapacitors, and electromagnetic interference shielding materials. Moreover, the current challenges and future outlooks are also discussed.  相似文献   

20.
The progressive size reduction of electronic components is experiencing bottlenecks in shrinking charge storage devices like batteries and supercapacitors, limiting their development into wearable and flexible zero‐pollution technologies. The inherent long cycle life, rapid charge–discharge patterns, and power density of supercapacitors rank them superior over other energy storage devices. In the modern market of zero‐pollution energy devices, currently the lightweight formula and shape adaptability are trending to meet the current requirement of wearables. Carbon nanomaterials have the potential to meet this demand, as they are the core of active electrode materials for supercapacitors and texturally tailored to demonstrate flexible and stretchable properties. With this perspective, the latest progress in novel materials from conventional carbons to recently developed and emerging nanomaterials toward lightweight stretchable active compounds for flexi‐wearable supercapacitors is presented. In addition, the limitations and challenges in realizing wearable energy storage systems and integrating the future of nanomaterials for efficient wearable technology are provided. Moreover, future perspectives on economically viable materials for wearables are also discussed, which could motivate researchers to pursue fabrication of cheap and efficient flexible nanomaterials for energy storage and pave the way for enabling a wide‐range of material‐based applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号