首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Error Control in Wireless Sensor Networks: A Cross Layer Analysis   总被引:1,自引:0,他引:1  
Error control is of significant importance for Wireless Sensor Networks (WSNs) because of their severe energy constraints and the low power communication requirements. In this paper, a cross-layer methodology for the analysis of error control schemes in WSNs is presented such that the effects of multi-hop routing and the broadcast nature of the wireless channel are investigated. More specifically, the cross-layer effects of routing, medium access, and physical layers are considered. This analysis enables a comprehensive comparison of forward error correction (FEC) codes, automatic repeat request (ARQ), and hybrid ARQ schemes in WSNs. The validation results show that the developed framework closely follows simulation results.   相似文献   

2.
Providing reliable data communications over wireless channels is a challenging task because time-varying wireless channel characteristics often lead to bit errors. These errors result in loss of IP packets and, consequently, TCP segments encapsulated into these packets. Since TCP cannot distinguish packet losses due to bit corruption from those due to network congestion, any packet loss caused by wireless channel impairments leads to unnecessary execution of the TCP congestion control algorithms and, hence, sub-optimal performance. Automatic Repeat reQuest (ARQ) and Forward Error Correction (FEC) try to improve communication reliability and reduce packet losses by detecting and recovering corrupted bits. Most analytical models that studied the effect of ARQ and FEC on TCP performance assumed that the ARQ scheme is perfectly persistent (i.e., completely reliable), thus a frame is always successfully transmitted irrespective of the number of transmission attempts it takes. In this paper, we develop an analytical cross-layer model for a TCP connection running over a wireless channel with a semi-reliable ARQ scheme, where the amount of transmission attempts is limited by some number. The model allows to evaluate the joint effect of stochastic properties of the wireless channel characteristics and various implementation-specific parameters on TCP performance, which makes it suitable for performance optimization studies. The input parameters include the bit error rate, the value of the normalized autocorrelation function of bit error observations at lag 1, the strength of the FEC code, the persistency of ARQ, the size of protocol data units at different layers, the raw data rate of the wireless channel, and the bottleneck link buffer size.  相似文献   

3.
In this paper, we address the design of data processing and error control strategies for a wireless sensor network for video-surveillance applications, so as to optimize its performance in terms of energy consumption, information delivery delay, and information quality. First, we suggest a video coding strategy based on intelligent distributed processing, which yields very low power consumption. Then, we investigate the interactions between energy consumption, quality, and delay, and analyze the system performance when ARQ- and FEC-based error-control techniques are applied. As a result, we propose an optimal configuration for wireless video-surveillance networks which adapts to the radio channel state by effectively implementing FEC and ARQ techniques.  相似文献   

4.
The emerging multimedia applications of Wireless Sensor Network (WSNs) impose new challenges in design of algorithms and communication protocols for such networks. In the view of these challenges, error control is an important mechanism that enables us to provide robust multimedia communication and maintain Quality of Service (QoS). Despite the existence of some good research works on error control analysis in WSNs, none of them provides a thorough study of error control schemes for multimedia delivery. In this paper, a comprehensive performance evaluation of Automatic Repeat Request (ARQ), Forward Error Correction (FEC), Erasure Coding (EC), link-layer hybrid FEC/ARQ, and cross-layer hybrid error control schemes over Wireless Multimedia Sensor Network (WMSNs) is performed. Performance metrics such as energy efficiency, frame Peak Signal-to-Noise Ratio (PSNR), frame loss rate, cumulative jitter, and delay-constrained PSNR are investigated. The results of our analysis show how wireless channel errors can affect the performance of multimedia sensor networks and how different error control scenarios can be effective for those networks. The results also provide the required insights for efficient design of error control protocols in multimedia communications over WSNs.  相似文献   

5.
Nakamura  M. Kodama  T. 《Electronics letters》1988,24(22):1369-1370
Automatic-repeat-request schemes which provide high system reliability with simple error-control are widely used in data communication systems. This letter presents a new evaluation method for ARQ schemes, which makes it possible to compare performances for various error-control schemes, such as FEC, ARQ and hybrid ARQ, with each other  相似文献   

6.
Two important objectives in wireless sensor networks are reliability and reducing energy consumption. Hence, overcoming energy constraints and utilizing error control schemes such as Automatic Repeat Request (ARQ) and Forward Error Correction (FEC) are necessary to improve the energy efficiency and reliability. However, these two concerns are at odds, so there is a trade-off between them. Considering this point, the impact of various error control schemes on these objectives and the trade-off between them has been considered in Bluetooth networks recently. However, all these works consider ideal assumptions (e.g., perfect error detection) only. This work evaluates the energy-efficiency of Bluetooth error control schemes in Rayleigh fading channels taking into consideration both ideal assumptions and residual error probability of the CRC code in ARQ schemes. A comparative analysis of coding techniques using different BCH codes on the AUX1 packet is provided. In addition, the impact of variations in number of hops and SNR on the effectiveness of proposed coding techniques is analyzed through simulation. This analysis provides information that help network designers to choose suitable packet types and coding techniques for Bluetooth networks depending on the network situation.  相似文献   

7.
Error correction and error detection techniques are often used in wireless transmission systems. The Asynchronous Transfer Mode (ATM) employs Header Error Control (HEC). Since ATM specifications have been developed for high‐quality optical fiber transmission systems, HEC has single‐bit error correction and multiple‐bit error detection capabilities. When HEC detects multiple‐bit error, the cell is discarded. However, wireless ATM requires a more powerful Forward Error Correction (FEC) scheme to improve the Bit Error Rate (BER) performance resulting in a reduction in the transmission power and antenna size. This concatenation of wireless FEC and HEC of the ATM may effect cell loss performance. This paper proposes error correction and error detection techniques suitable for wireless ATM and analyzes the performance of the proposed schemes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
无线信道的高误码率对视频图像质量有很大的影响,前向纠错(FEC)和自动重发请求(ARQ)对于降低无线信道的误码率,提高图像质量有很好的效果。通过对FEC和ARQ方法的有效性分析,在TMN8的基础上提出一种简单的混合FEC/ARQ自适应模式选择码率控制方法。该方法首先预测报文丢失数量和纠错报文传输时延,从而选择合适的纠错编码模式,并为纠错编码分配比特数。实验结果表明该方法有效降低无线信道下报文丢失率,显著提高了图像质量。  相似文献   

9.
Energy consumption is a key issue in body sensor networks (BSNs) since energy‐constrained sensors monitor the vital signs of human beings in healthcare applications. In this paper, packet size optimization for BSNs has been analyzed to improve the efficiency of energy consumption. Existing studies on packet size optimization in wireless sensor networks cannot be applied to BSNs because the different operational characteristics of nodes and the channel effects of in‐body and on‐body propagation cannot be captured. In this paper, automatic repeat request (ARQ), forward error correction (FEC) block codes, and FEC convolutional codes have been analyzed regarding their energy efficiency. The hop‐length extension technique has been applied to improve this metric with FEC block codes. The theoretical analysis and the numerical evaluations reveal that exploiting FEC schemes improves the energy efficiency, increases the optimal payload packet size, and extends the hop length for all scenarios for in‐body and on‐body propagation.  相似文献   

10.
Joe  Inwhee 《Wireless Networks》2000,6(3):211-219
This paper describes the design and performance of a novel adaptive hybrid ARQ scheme using concatenated FEC codes for error control over wireless ATM networks. The wireless links are characterized by higher, time‐varying error rates and burstier error patterns in comparison with the fiber‐based links for which ATM was designed. The purpose of the hybrid ARQ scheme is to provide a capability to dynamically support reliable ATM‐based transport over wireless channels by using a combination of our ARQ scheme (called SDLP) and the concatenated FEC scheme. The key ideas in the proposed hybrid ARQ scheme are to adapt the code rate to the channel conditions using incremental redundancy and to increase the starting code rate as much as possible with the concatenated FEC, maximizing the throughput efficiency. The numerical results show that our proposed scheme outperforms other ARQ schemes for all SNR values. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Different strategies for error control are investigated, in conjunction with a MAC-level protocol, operating in a multimedia noisy cellular environment, where a base station co-ordinates mobile users within each cell. The channel multiplexing structure is based on Time Division (TDM), and the slots in each frame are dynamically assigned to the users and their service classes. The access rights are decided by an algorithm, namely, the Independent Stations Algorithm (ISA), at the cell base station, which broadcasts this information to the users. Each single mobile station is associated a bit error probability, which changes with time in a random fashion. Bit error probabilities are estimated and the protection level of the Forward Error Correction (FEC) code is dynamically adapted to the new conditions. The performance of the scheme is analyzed by simulation in the presence of mixed voice and data traffic, and with different error handling techniques (FEC and Automatic Retransmission Request (ARQ)).  相似文献   

12.
The effectiveness of hybrid error control schemes involving forward error correction (FEC) and automatic repeat request (ARQ) is examined for satellite channels. The principal features of the channel are: large round-trip transmission delay due to the satellite link, and burst errors introduced by the terrestrial links that connect the users to the satellite link. The performance is estimated for two channels described by Fritchman's simple partitioned finite-state Markov model, and is compared to that obtainable if the channel is considered as a binary symmetric channel of the same bit error probability. Results show that the hybrid schemes offer substantial improvement over ARQ and FEC, and that an optimum exists for the number of errors corrected to obtain maximum throughput efficiency.  相似文献   

13.
突发信道下无线ATM的前向差错控制方案   总被引:1,自引:0,他引:1  
张昱  刘庚峰  陆建华 《电讯技术》2002,42(5):115-118
在无线ATM网络中,无线信道的高误码率和突发特性要求对无线ATM信元进行较强的误码保护。本文提出了一种有效的前向差错控制(FEC)方案,对信元头采用较强的FEC,对信息域采用较弱的FEC,并针对信道特性和采用的前向差错控制编码的特点进行元头信元内交织,文中对无线ATM信元在突发信道下的信元丢失率和信元信息错误率进行了分析,仿真结果表明该方案在降低信元信息错误率的同时有效地降低了信元丢失率。  相似文献   

14.
The design of a bandwidth-efficient physical layer for wireless access has always been a challenging task, due to the harsh environment, characterized by impairing phenomena such as radio interference, fading, and shadowing. With circuit switching, a bit-error rate suitable for real-time applications such as voice and video is guaranteed by adopting robust forward error correction (FEC) codes and proper power-budget margins to face fading problems. With this approach, automatic repeat request (ARQ) is used only for applications that require a much lower error rate and can tolerate high delays. The introduction of the packet technique allows the use of ARQ even for real-time traffic. We compare the efficiency of three error-recovering techniques in the presence of traffic with delay constraints, when the memory property of the wireless segment is represented by the Gilbert-Elliot channel. The techniques compared are FEC with interleaving, real-time ARQ, and erasure coding (EC). The comparisons are performed by using both analytical and simulation tools. Two new analytical models are introduced to evaluate the performance of FEC and EC. Simulation is used to validate the analytical results and to derive the performance of real-time ARQ. The numerical results show that when the channel memory increases well beyond the packet-transmission time, the performance of FEC impairs due to the limited interleaving depth, while ARQ and EC remain effective.  相似文献   

15.
Wireless channels are highly affected by unpredictable factors such as cochannel interference, adjacent channel interference, propagation path loss, shadowing, and multipath fading. The unreliability of media seriously degrades the transmission quality. Automatic Repeat reQuest (ARQ) and Forward Error Correction (FEC) schemes are frequently used in wireless environments to reduce the high bit error rate of the channel. In this paper, we propose an adaptive error‐control scheme for wireless networks on the basis of dynamic variation of error‐control strategy as a function of the channel bit error rate, desired QoS, and number of receivers. Reed–Solomon codes are used throughout this study because of their appropriate characteristics in terms of powerful coding and implementation simplicity. Simulation results show that our adaptive error‐control protocol decreases the waste of bandwidth due to retransmissions or extra coding overheads while satisfying the QoS requirements of the receivers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
For a quadrature amplitude modulation (QAM) communication channel with forward error correction (FEC) and automatic repeat request (ARQ), the bit error rate (BER) is estimated as a function of the channel signal‐to‐noise ratio (SNR). A method is presented for trading off the number of allowed transmissions and the level of margin (or the line ARQ gain) applied to the channel SNR. The line ARQ gain maximizing the channel throughput is shown to be a sum of the channel SNR and some function of the bit load and FEC parameters. Using this result, we formulate a fast method of determining the optimum ARQ parameters at the actual channel conditions, based on their values at some reference conditions, the latter being either stored in the modem memory or pre‐calculated prior to channel initialization. The derivations are presented both for AWGN and slowly fading channel conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Terahertz (THz) communication is considered to be one of the demanding technology for the upcoming 5G standards. The incredible demand for high rate through wireless channel necessitates the use of THz frequency for communication. The development of communication systems in this frequency band possess technical challenges as the characteristic of THz band is very much different from the present wireless channel. However, the advancements in the development of transceiver and antenna systems are rapidly bringing the THz communication into reality. The high path loss in THz band limits the communication range of this channel. Even, for a distance of few meters (>5m), the absorption coefficient is very high and hence the performance of the system is poor. Performance over this frequency channel can be enhanced by considering transmission windows over this band instead of the entire band. The transmission windows are the frequencies over which the absorption is relatively low. Though there is an improvement in the performance with this adaptive modulation scheme, but not sufficient for longer distance. Apart from path loss, the frequency selective nature of this high bandwidth channel is also a major reason for the poor performance of THz channel. Orthogonal Frequency Division Multiplexing (OFDM) is a promising solution to mitigate the effects of frequency selective nature of the wireless channel. OFDM has been exploited in this paper to improve the performance of terahertz channel. The results show that the Bit Error Rate (BER) of the terahertz channel is considerably improved with OFDM.  相似文献   

18.
基于校正子的计算提出了一种第一类混合ARQ (HARQ) 方案,该HARQ采用Reed-Solomon (RS)码作为纠错子系统,将检错功能巧妙融于译码过程中。对系统误比特率和吞吐量的分析与仿真表明,短码宜采用前向校正子结构,长码宜采用后向校正子结构,而系统的吞吐量与可靠性之间的最佳折衷,可以通过选择恰当的最大重传次数实现。  相似文献   

19.
Terahertz (THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band, wireless THz communication can be used for relatively short distances. Even, for a distance of few meters (>5m), the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades. Multiple Input Multiple Output (MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate (BER) is considerably improved for short distance (<5m) with MIMO. However, as the distance increases, the improvement in the error performance is not significant even with increase in the order of diversity. This is because, as distance increases, in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5m.  相似文献   

20.
This paper considers truncated type-II hybrid automatic repeat-request (ARQ) schemes with noisy feedback over block fading channels. With these ARQ techniques, the number of retransmissions is limited, and, similar to forward error correction (FEC), error-free delivery of data packets cannot be guaranteed. Bounds on the average number of transmissions, the average coding rate as well as the reliability of the schemes are derived using random coding techniques, and the performance is compared with FEC. The random coding bounds reveal the achievable performance with block codes and maximum-likelihood soft-decision decoding. Union upper bounds and simulation results show that over block fading channels, these bounds can be closely approached with simple terminated convolutional codes and soft-decision Viterbi decoding. Truncated type-II hybrid ARQ and the corresponding FEC schemes have the same probability of packet erasure; however, the truncated ARQ schemes offer a trade-off between the average coding rate and the probability of undetected error. Truncated ARQ schemes have significantly higher average coding rates than FEC at high and medium signal-to-noise ratio even with noisy feedback. Truncated ARQ can be viewed as adaptive FEC that adapts to the instantaneous channel conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号