首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文较详细地讨论了异质结晶体管的设计原理、材料选用和结构设计。在能带设计方面对宽发射区、缓变基区和多种收集区分别进行了讨论,比较了不同能带结构的优缺点。文章以晶体管的特征频率f_T和最高振荡频率f_(max)为例分析和比较了Ge/GaAs,Si/α-Si,GaAs/GaAlAs,InGaAsP/InP四种异质结晶体管的频率特性潜力。文章最后对目前常用的台面结构、平面结构、倒置结构作了介绍,并分析了它们的优缺点,简介了异质结的发展现状和发展方向。  相似文献   

2.
介绍分析了在蜂窝和个人通信业务 (PCS)市场中适用于 RFIC的多种射频晶体管技术。Ga As HBT技术被作为介绍的基线 ,并且与目前已有的技术进行比较 ,得出对于射频应用 ,Ga AsHBT综合了 Si BJT和 Ga As FET两者优点的结论。文中还介绍了近年来国外 Ga As HBT MMIC,PHEMT MMIC和 In P HBT MMIC的研究进展情况。  相似文献   

3.
The reliability characteristics of Heterojunction Bipolar Transistor made on GaAs and InP substrates are reviewed and ways of improving them by design, growth and processing are described. Materials for HBTs are grown by a variety of techniques (MBE, MOCVD, CBE). Their choice is made based on considerations such as satisfaction of design requirements and manufacturing but also dopant incorporation without risk of diffusion, as well as, minimization of hydrogen incorporation which may result in device degradation. The minority carrier lifetime in the base is influenced by hydrogen incorporation in C-InGaAs. Conventional alloyed and non-alloyed, as well as, refractory metallization schemes are considered for best reliability performance. The dielectric deposition scheme used for passivation plays a major role on device reliability. Good reliability performance is reported for GaAs but also for InP-based HBTs. A correlation is finally reported to exist between the low-frequency noise properties of HBTs and their reliability characteristics.  相似文献   

4.
This paper presents a comprehensive comparison of three state-of-the-art heterojunction bipolar transistors (HBTs); the AlGaAs/GaAs HBT, the Si/SiGe HBT and the InGaAs/InP HBT. Our aim in this paper is to find the potentials and limitations of these devices and analyze them under common Figure of Merit (FOM) definitions as well as to make a meaningful comparison which is necessary for a technology choice especially in RF-circuit and system level applications such as power amplifier, low noise amplifier circuits and transceiver/receiver systems. Simulation of an HBT device with an HBT model instead of traditional BJT models is also presented for the AlGaAs/GaAs HBT. To the best of our knowledge, this work covers the most extensive FOM analysis for these devices such as I-V behavior, stability, power gain analysis, characteristic frequencies and minimum noise figure. DC and bias point simulations of the devices are performed using Agilent's ADS design tool and a comparison is given for a wide range of FOM specifications. Based on our literature survey and simulation results, we have concluded that GaAs based HBTs are suitable for high-power applications due to their high-breakdown voltages, SiGe based HBTs are promising for low noise applications due to their low noise figures and InP will be the choice if very high-data rates is of primary importance since InP based HBT transistors have superior material properties leading to Terahertz frequency operation.  相似文献   

5.
HBT结构的新进展   总被引:3,自引:0,他引:3  
石瑞英  刘训春 《半导体技术》2002,27(6):69-72,76
介绍了以In0.03Ga0.97As0.99N0.01材料为基区的GaAs异质结双极型晶体管和以GaAs0.51Sb0.49材料为基区的InP HBT.讨论了GaAs和InP HBT结构的新进展及其对性能的改善,并对各结构的适用范围和优缺点进行了比较.  相似文献   

6.
An analytic study of DC characteristics based on the drift-diffusion approach has been performed for the InP/GaAsSb DHBTs. The current transport of InP/GaAsSb/InP DHBTs has been investigated focusing the device temperature dependence. Our simulation results show that, at room temperature, the DC characteristics of the InP/GaAsSb/InP DHBTs similar to the conventional InP-based HBT using InGaAs as the base layer although a type-II energy band alignment is presented in the InP/GaAsSb HBT. However, due to different mechanisms for the electron injection from the emitter induced by the different conduction band alignments, the InP/GaAsSb HBTs may present a different temperature dependent behavior in term of device current gain as compared to the conventional InP/InGaAs HBTs. Higher current gain could be achieved by the InP/GaAsSb HBTs at elevated temperature.  相似文献   

7.
InP/In0.53Ga0.47As/InP double heterojunction bipolar transistors (HBTs) were grown on GaAs substrates. A 140 GHz power-gain cutoff frequency fmax and a 207 GHz current-gain cutoff frequency fτ were obtained, presently the highest reported values for metamorphic HBTs. The breakdown voltage BVCEO was 5.5 V, while the dc current gain β was 76. High-thermal-conductivity InP metamorphic buffer layers were employed in order to minimize the device-thermal resistance  相似文献   

8.
This paper presents a brief introduction to GaAs/GaAlAs heterojunction bipolar transistors (HBTs) for microwave and millimetre-wave power applications. The theoretical advantages of the heterojunction are outlined and the benefits of its incorporation in DC, RF and power devices are discussed. The problems inherent in the realization of HBTs in terms of device design, epitaxial material growth and device fabrication are discussed and the performance characteristics for practical devices presented. The paper concludes with a look at state-of-the-art GaAs/GaAlAs HBT performance and its standing with respect to the competing technologies of the metal semiconductor field effect transistor (MESFET) and the high electron mobility transistor (HEMT).  相似文献   

9.
This paper describes the monolithic integration of InP HBTs and uni-traveling-carrier photodiodes (UTC-PDs) by nonselective regrowth. HBTs are fabricated from nonselectively regrown device layers and UTC-PD subcollector layers, which are grown first on a 3-in InP substrate. This makes it possible to optimize the layer design for the HBTs and UTC-PDs independently and minimize the interconnection between them. The fabricated HBTs have a collector thickness of 200 nm, and they show an ft of 260 GHz and an fmax of 320 GHz at a collector current density of 2.5 mA/mum2. The standard deviations of the ft and fmax across the wafer are 1.7% and 4.4%, respectively. The length of the interconnection between the HBTs and UTC-PDs can be made as small as 10 mum without any degradation of the regrown-HBT performance. The UTC-PDs fabricated on the same wafer exhibit a 3-dB bandwidth of 100 GHz and an output voltage of 1.0 V. There is no drawback in the performance of either device, as compared with that of discrete devices. We also demonstrate 100-GHz optical-input divide-by-two optoelectronic integrated circuits (OEICs) consisting of InP HBTs and a UTC-PD using this technique. These results indicate that the nonselective regrowth is promising for application toward over 100-Gb/s OEICs.  相似文献   

10.
The five papers selected for this Special Section, chosen in part based on symposium attendee survey feedback, highlight some of the most significant achievements reported at the meeting. The first paper describes a WCDMA base-station power amplifier utilizing GaAs high-voltage HBTs and a wideband envelope tracking system to achieve high power, high linearity performance at higher efficiency than competing technologies. The next two papers demonstrate the remarkable versatility and performance of state-of-the-art GaN technology. The fourth paper presents a SiGe HBT-based 80 GHz voltage-controlled oscillator (VCO) with a very wide tuning rage for applications such as 77 GHz automotive radar. And the final paper describes >100 GHz gain-bandwidth amplifier enabled using a novel wafer bonding approach to heteregeneous integration of InP HBTs and conventional 130 nm CMOS.  相似文献   

11.
We investigate the physical parameters which are critical to the understanding of the thermal phenomena in InP-based heterojunction bipolar transistors. These parameters include thermal resistance, thermal-electric feedback coefficient, current gain, and base-collector leakage current. We examine the thermal instability behavior in multi-finger HBTs, and observe for the first time the collapse of current gain in InP-based HBTs. Based on both measurement and modeling results, we establish the reasons why the collapse is rarely observed in InP HBT's, in a sharp contrast to AlGaAs/GaAs HBT's. We compare the similarities and differences on how InP-based HBT, GaAs-based HBT, and Si-based bipolar transistors react once the thermal instability condition is met. Finally, we describe the issues involved in the design of InP HBTs  相似文献   

12.
A theoretical thermoelectro-feedback model has been developed for the thermal design of high-power GaAlAs/GaAs heterojunction bipolar transistors (HBTs). The power-handling capability, thermal instability, junction temperature, and current distributions of HBTs with multiple emitter fingers have been numerically studied. The calculated results indicate that power HBTs on Si substrates (or with Si as the collector) have excellent potential power performance and reliability. The power-handling capability on Si is 3.5 and 2.7 times as large as that on GaAs and InP substrates, respectively. The peak junction temperature and temperature difference on the chip decrease in comparison to the commonly used Si homostructure power transistor with the same geometry and power dissipation. Thereby HBTs are promising for high-speed microwave and millimeter-wave applications. It has been also found that the nonuniform distribution of junction temperature and current can be greatly improved by a ballasting technique that uses unequal-valued emitter resistors  相似文献   

13.
We present a comparison of material quality and device performance of metamorphic InGaAs/InP heterojunction bipolar transistors (HBTs) grown by molecular beam epitaxy (MBE) on GaAs substrates with two different types of buffer layers (direct InP and graded InAlP buffers). The results show that the active layer of InP-MHBT has more than one order of magnitude more defects than that of the InAlP-MHBT. The InAlP-MHBTs show excellent direct current (DC) performance. Low DC current gain and a high base junction ideality factor from the InP-MHBT are possibly due to a large number of electrically active dislocations in the HBT active layers, which is consistent with a large number of defects observed by cross-sectional transmission electron microscopy (TEM) and rough surface morphology observed by atomic force microscopy (AFM).  相似文献   

14.
This paper reviews the reliability of III-V based heterojunction bipolar transistors (HBTs). These devices have many potential advantages over other solid-state microwave devices. However, because of the tradeoff between performance and reliability, they are not being used to any great extent in power microwave applications. In the type of III-V HBT device most fully developed, the AlGaAs/GaAs HBT, leakage currents play a major role in the dominant mode of degradation. Because low-frequency noise is related to these leakage currents it has been used extensively in the analysis of the performance and reliability limitations of these devices. The reliability of other types of III-V HBT devices, such as InGaP/GaAs and InP based devices, is also discussed.  相似文献   

15.
The results of a dynamic analysis of electron transport in GaAs and InP have been used to determine the effects of device cooling, channel length, and frequency of operation on the noise performance of FET's made of these materials. Noise temperature of the material as a function of electric field is first obtained by an analysis that models intervalley scattering using a Monte Carlo calculation method. Noise figure of the intrinsic device is then obtained using a gradual-channel analysis. The validity of such an analysis is discussed. Both GaAs and InP FET's should exhibit very good low-noise performance, with the intrinsic InP device somewhat noisier than the GaAs device at equivalent values of f/fT. For GaAs the intrinsic noise figure can be considerably reduced as the device is cooled, but for InP, cooling from 300 to 77 K should leave intrinsic noise figure almost unchanged.  相似文献   

16.
In0.52Al0.48As/In0.53Ga0.47As heterojunction bipolar transistors (HBTs) were grown metamorphically on GaAs substrates by molecular beam epitaxy. In these growths, InAlAs, AlGaAsSb, and InP metamorphic buffer layers were investigated. The InAlAs and AlGaAsSb buffer layers had linear compositional grading while the InP buffer layer used direct binary deposition. The transistors grown on these three layers showed similar characteristics. Bulk thermal conductivities of 10.5, 8.4, and 16.1 W/m K were measured for the InAlAs, AlGaAsSb, and InP buffer layers, as compared to the 69 W/m K bulk thermal conductivity of bulk InP. Calculations of the resulting HBT junction temperature strongly suggest that InP metamorphic buffer layers should be employed for metamorphic HBTs operating at high power densities.  相似文献   

17.
InP-In/sub 0.53/Ga/sub 0.47/As-InP double heterojunction bipolar transistors (DHBTs) were grown on GaAs substrates. A 284-GHz power-gain cutoff frequency f/sub max/ and a 216-GHz current-gain cutoff frequency f/sub /spl tau// were obtained, presently the highest reported values for metamorphic HBTs. The breakdown voltage BV/sub CEO/ was >5 V while the dc current gain /spl beta/ was 21. High thermal conductivity InP metamorphic buffer layers were employed in order to minimize the device thermal resistance.  相似文献   

18.
We present in this letter the benefits of GaN-based electronic devices for low-noise MMICs. A temperature-dependent two-temperature noise model for AlGaN/GaN HFETs is implemented on a wide range of bias conditions. This study enables to access the device high-frequency noise parameters, and allow a comparison of the noise performances with SiC and GaAs technologies.  相似文献   

19.
Thermal properties of metamorphic InP-InGaAs heterojunction bipolar transistors (HBTs) on GaAs substrates using a linearly graded InGaP buffer have been investigated. Compared to the widely used InAlAs metamorphic buffer, InGaP offers better thermal properties resulting in a much smaller thermal resistance for the metamorphic HBTs (MHBTs). Theoretical calculations of the thermal resistance of devices have been made based on a simple constant heat-spreading model, and the results are shown to be consistent with experimental results. It has been made clear that the smaller thermal resistance measured from the MHBTs using a linearly graded InGaP buffer is due to the small bowing parameters and high thermal conductivity of the binary endpoints. Although the use of InGaP as a buffer may slightly degrade the devices thermal properties compared to one using InP directly on GaAs substrate, it gives more freedom to the growth optimization of metamorphic buffer by using compositional grading. With regards to the thermal conductivity and flexible growth optimization, InGaP metamorphic buffer could be considered as an important alternative to the existing InAlAs and InP schemes.  相似文献   

20.
This paper experimentally determines and compares the 1/f noise and the g-r noise, as components of the base noise current spectral density, in Si homojunction and III-V heterojunction bipolar transistors (HBTs) in common-emitter configuration. The noise spectra for each of these devices are obtained as functions of the base bias current (IB), and the 1/f noise has been found to depend on IB as IBγ, where γ~1.8 for the silicon BJT's and InP/InGaAs HBT's with high current gains (β~50), and γ~1.1 for the AlGaAs/GaAs HBTs with low current gains (4<β<12). The nearly constant current gain and the near square-law and inverse-square emitter area dependence of 1/f noise in silicon devices are indicative of the dominant base bulk recombination nature of this noise. The 1/f noise in the InP based HBTs has been found to be lowest among all the devices we have tested, and its origin is suggested to be the base bulk recombination as in the Si devices. For the AlGaAs/GaAs HBTs, the low current gain and the near unity value of γ, arise most likely due to the combined effects of surface, bulk, and depletion region recombinations and the base-to-emitter injection. The dependence of the 1/f noise on the base current density in the devices tested in this work, and those tested by others are compared to find out which HBT's have achieved the lowest level of 1/f noise  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号