首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
设计并生长了一种新的InGaP/GaAs/InGaP DHBT结构材料,采用在基区和集电区之间插入n+-InGaP插入层结构,以解决InGaP/GaAs/InGaP DHBT集电结导带尖峰的电子阻挡效应问题。采用气态源分子束外延(GSMBE)技术,通过优化生长条件,获得了高质量外延材料,成功地生长出带有n+-InGaP插入层结构的GaAs基InGaP/GaAs/InGaP DHBT结构材料。采用常规的湿法腐蚀工艺,研制出发射极面积为100μm×100μm的新型结构InGaP/GaAs/InGaP DHBT器件。直流特性测试的结果表明,所设计的集电结带有n+-InGaP插入层的InGaP/GaAs/InGaP DHBT器件开启电压约为0.15V,反向击穿电压达到16V,与传统的单异质结InGaP/GaAs HBT相比,反向击穿电压提高了一倍,能够满足低损耗、较高功率器件与电路制作的要求。  相似文献   

2.
This letter investigates the dc characteristics of a double heterojunction bipolar transistor (DHBT) with a compressively strained InGaAsSb base, which is grown by solid-source molecular beam epitaxy. The novel InP/InGaAsSb HBT has a lower base/emitter (B/E) junction turn-on voltage, a lower offset voltage, and a junction ideality factor closer to unity than the conventional InP/InGaAs composite collector DHBT. These characteristics are attributed to the transistor's type-I B/E junction and type-II base/collector junction, which facilitates carrier transport for low power, high current density, and high-speed operation. Heterojunction bipolar transistors (HBTs), InP/InGaAsSb, molecular beam epitaxy (MBE).  相似文献   

3.
We report on the dc and microwave performance of an MOCVD-grown carbon-doped GaInP/GaAs double heterojunction bipolar transistor (DHBT) with a thin highly doped n-type GaInP layer in the collector. The DHBT showed improved current-voltage characteristics at low collector-emitter bias compared with those of a DHBT without the heavily doped GaInP layer, while maintaining a high breakdown voltage (BVCEO~20 V). Small area, self-aligned emitter transistors with two 2×5 μm2 emitter fingers were fabricated and exhibited fT and fmax of 53 GHz and 75 GHz, respectively. These results indicate the promise of carbon-doped base GaInP/GaAs DHBT's for high-power microwave applications  相似文献   

4.
InGaP/GaInAsN double heterojunction bipolar transistors (HBTs) with compositionally graded bases are presented which exhibit superior dc and radio frequency performance. Reducing the average base layer energy gap and optimizing the emitter-base (e-b) and base-collector (b-c) heterojunctions leads to a 100-mV reduction in the turn-on voltage compared to a baseline InGaP/GaAs process. Simultaneously grading the base layer energy band-gap results in over a 66% improvement in the dc current gain and up to a 35% increase in the unity gain cutoff frequency. DC current gains as high as 250 and cutoff frequencies of 70 GHz are demonstrated. In addition, the InGaP/GaInAsN DHBT structure significantly reduces the common emitter offset and knee voltages, as well as improves the dc current gain temperature stability relative to standard InGaP/GaAs HBTs.  相似文献   

5.
报道了一种以InGaAs为基区的新结构InGaP/InGaAs/GaAs双异质结晶体管,获得了直流性能良好的器件.其共射直流增益β达到100,残余电压Voffset约为0.4V,膝点电压Vknee约为1V,击穿电压BVceo超过10V,器件的基极和集电极电流理想因子分别为nb=1.16,nc=1.11,可应用于低功耗、高功率领域.  相似文献   

6.
The characteristics of InGaP/GaAs heterostructure-emitter bipolar transistors (HEBTs) including conventional GaAs bulk base, InGaAs/GaAs superlattice-base, and InGaAs quantum-well base structures are presented and compared by two-dimensional simulation analysis. Among of the devices, the superlattice-base device exhibits a highest collector current, a highest current gain and a lowest base–emitter turn-on voltage attributed to the increased charge storage of minority carriers in the InGaAs/GaAs superlattice-base region by tunneling behavior. The relatively low turn-on voltage can reduce the operating voltage and collector–emitter offset voltage for low power consumption in circuit applications. However, as to the quantum-well base device, the electrons injecting into the InGaAs well are blocked by the p+-GaAs bulk base and it causes a great quantity of electron storage within the small energy-gap n-type GaAs emitter layer, which significantly increases the base recombination current as well as degrades the collector current and current gain.  相似文献   

7.
A new collector design for the AlGaAs-GaAs double heterostructure bipolar transistor (DHBT) is proposed, analyzed, and simulated. The base-collector junction is linearly graded and terminated with a highly doped thin layer to offset the adverse alloy grading electric field. Simple analytical formulas are derived to facilitate the implementation of the design. A proof-of-principle simulation has been carried out for an X-band AlGaAs-GaAs power DHBT to confirm the design and the derived formula. The simulation shows the breakdown voltage can be increased from 30 V to about 45 V while the critical current density is about the same. It is also shown that, unlike other refined DHBT structures, the proposed structure does not require critical control in the fabrication of the base-collector junction  相似文献   

8.
Al0.11Ga0.89As was used in the base, next to the GaInP collector of a DHBT, to eliminate the conduction band spike. The DHBT's demonstrated high breakdown voltages, BVCEO and BV CBO of 44.5 V and 54.5 V (gain≈20), respectively, for a 1-μm-thick collector doped to 2×1016 cm-3 with no voltage dependence of the current gain. Magneto-transport measurements were made on the AlGaAs bases and indicated limitations on the maximum practical base doping due to the inferior minority electron mobility and lifetime when compared with equivalently doped GaAs. Grading in the base from Al0.11Ga0.89As at the collector to Al0.21Ga0.79As at the emitter introduced a quasielectric field in the base, reduced the base transit time by a factor of ~2.5, and improved the gain over ungraded devices with the same average Al concentration  相似文献   

9.
The first demonstration of a type-II InP/GaAsSb double heterojunction bipolar transistor (DHBT) with a compositionally graded InGaAsSb to GaAsSb base layer is presented. A device with a 0.4/spl times/6 /spl mu/m/sup 2/ emitter dimensions achieves peak f/sub T/ of 475 GHz (f/sub MAX/=265 GHz) with current density at peak f/sub T/ exceeding 12 mA//spl mu/m/sup 2/. The structure consists of a 25-nm InGaAsSb/GaAsSb graded base layer and 65-nm InP collector grown by MBE with breakdown voltage /spl sim/4 V which demonstrates the vertical scaling versus breakdown advantage over type-I DHBTs.  相似文献   

10.
正An InGaAs/InP DHBT with an InGaAsP composite collector is designed and fabricated using triple mesa structural and planarization technology.All processes are on 3-inch wafers.The DHBT with an emitter area of 1 x 15μm~2 exhibits a current cutoff frequency f_t = 170 GHz and a maximum oscillation frequency f_(max) = 256 GHz.The breakdown voltage is 8.3 V,which is to our knowledge the highest BV_(CEO) ever reported for InGaAs/InP DHBTs in China with comparable high frequency performances.The high speed InGaAs/InP DHBTs with high breakdown voltage are promising for voltage-controlled oscillator and mixer applications at W band or even higher frequencies.  相似文献   

11.
《Microelectronics Journal》2007,38(6-7):750-753
A novel InGaP/GaAs heterostructure-emitter bipolar transistor (HEBT) with InGaAs/GaAs superlattice-base structure is proposed and demonstrated by two-dimensional analysis. As compared with the traditional HEBT, the studied superlattice-base device exhibits a higher collector current, a higher current gain of 246, and a lower base–emitter (B–E) turn-on voltage of 0.966 V at a current level of 1 μA, attributed to the increased charge storage of minority carriers in the InGaAs/GaAs superlattice-base region by tunneling behavior. The low turn-on voltage can reduce the operating voltage and collector–emitter offset voltage for low power consumption in circuit applications.  相似文献   

12.
报道了一种自对准InP/InGaAs 双异质结双极晶体管的器件性能.成功制作了U型发射极尺寸为2μm×12μm的器件,其峰值共射直流增益超过300,残余电压约为0.16V,膝点电压仅为0.6V,而击穿电压约为6V.器件的截至频率达到80GHz,最大震荡频率为40GHz.这些特性使此类器件更适合于低压、低功耗及高频方面的应用.  相似文献   

13.
Different emitter size, self-aligned In0.49Ga0.51 P/GaAs tunneling emitter bipolar transistors (TEBTs) grown by gas source molecular beam epitaxy (GSMBE) with 100-Å barrier thickness and 1000-Å p+(1×1019 cm-3) base have been fabricated and measured at room temperature. A small-signal current gain of 236 and a small common-emitter offset voltage of 40 mV were achieved without any grading. It is found that the emitter size effect on current gain was reduced by the use of a tunnel barrier. The current gain and the offset voltage obtained were the highest and lowest reported values to date, respectively, in InGaP/GaAs system heterojunction bipolar transistors (HBTs) or TEBTs with similar base dopings and thicknesses  相似文献   

14.
Through compositional grading of the collector, we have significantly reduced both the offset and saturation voltage of a tunneling hot-electron transfer amplifier relative to a similar transistor with a fixed composition collector structure. In the absence of a collector-base voltage, the electric field produced by the compositional grading improves the collection efficiency of ballistic electrons transported across the base  相似文献   

15.
The reliability of InP/InGaAs DHBT under high collector current densities and low junction temperatures is analyzed and modeled. From the Gummel characteristics, we observe several types of device degradation, resulting from the long term changes of base and collector current in both lower and higher base–emitter voltage ranges which impacts the reduction of DC current gain. In this paper, we investigate the underlying physical mechanism of base and collector current degradation with the help of TCAD device simulation. We chose the HICUM model level2 for the modeling purpose to evaluate the drift of model parameters according to stress time. The evolution of the model parameters is described with suitable equations to achieve a physics based compact electrical aging model. The aging laws and the parameter evolution equations with stress time are implemented in compact electrical aging model which allows us to simulate the impact of device failure mechanisms on the circuit in operating conditions.  相似文献   

16.
GaN HBT: toward an RF device   总被引:1,自引:0,他引:1  
This paper reviews efforts to develop growth and fabrication technology for the GaN HBT. Conventional devices are grown by plasma assisted MBE on MOCVD GaN templates on sapphire. HBTs were fabricated on LEO material identifying threading dislocations as the primary source of collector-emitter leakage which was reduced by four orders of magnitude for devices on nondislocated material. Base doping studies show that the mechanism of this leakage is localized punch-through caused by compensation near the dislocation. High contact and lateral resistance in the base cause large parasitic common emitter offset voltages (from 1 to 5 V) in GaN HBTs. The effect of this voltage drop on common emitter characteristics is discussed. The combination of this voltage drop and the emitter collector leakage make Gummel and common base characteristics unreliable without verification with common emitter characteristics. The selectively regrown emitter bipolar transistor is presented with a DC current gain of 6 and early voltage greater than 400 V. The transistor operated to voltages over 70 V. This device design reduces base contact resistance, and circumvented difficulties associated with the emitter mesa etch process. The Mg memory effect in MOCVD grown GaN HBTs is discussed, and MBE grown device layers are shown to produce sharp doping profiles. The low current gain of these devices is discussed, and an HBT with a compositionally graded base is presented, as well as simulations predicting further current gain improvements with base grading  相似文献   

17.
Small-area regrown emitter-base junction InP/In-GaAs/InP double heterojunction bipolar transistors (DHBT) using an abrupt InP emitter are presented for the first time. In a device with emitter-base junction area of 0.7 /spl times/ 8 /spl mu/m/sup 2/, a maximum 183 GHz f/sub T/ and 165 GHz f/sub max/ are exhibited. To our knowledge, this is the highest reported bandwidth for a III-V bipolar transistor utilizing emitter regrowth. The emitter current density is 6/spl times/10/sup 5/ A/cm/sup 2/ at V/sub CE,sat/ = 1.5 V. The small-signal current gain h/sub 21/ = 17, while collector breakdown voltage is near 6 V for the 1500-/spl Aring/-thick collector. The emitter structure, created by nonselective molecular beam epitaxy regrowth, combines a small-area emitter-base junction and a larger-area extrinsic emitter contact, and is similar in structure to that of a SiGe HBT. The higher f/sub T/ and f/sub max/ compared to previously reported devices are achieved by simplified regrowth using an InP emitter and by improvements to the regrowth surface preparation process.  相似文献   

18.
The dead space effect under near-breakdown conditions in GaInP/GaAs composite collector double heterojunction bipolar transistor (DHBT) is investigated analytically. Using the dead space corrected model, the breakdown voltage is found to decrease with GaAs spacer thickness as reported from experiments. The common-mode emitter IV characteristics for the DHBT are simulated until the onset of multiplication with good agreement with reported experimental results [IEEE Elec. Dev. Lett. 15 (1994) 10]. A proposed optimised structure is simulated with comparably good turn-on IV characteristics and improved breakdown performance.  相似文献   

19.
We report the performance of an AlInAs/GaInAs/InP DHBT with a new collector design. The base-collector junction was formed with an all arsenide chirped superlattice with linear variation in the average composition. A doping dipole was inserted at the ends of the superlattice to cancel the quasielectric field. The conduction band offset between AlInAs and InP enabled hot electrons to be launched into the InP collector. The new design resulted in an excellent combination of speed and breakdown voltage with superior microwave power performance at X-band. Output power of 2 W (5.6 W/mm) with 70% power-added-efficiency at 9 GHz was achieved  相似文献   

20.
Two-dimensional simulations of the combined effects of emitter and base grading on the current gain and cutoff frequency ft of heterojunction bipolar transistor (HBT) devices are presented. At low bias, the highest current gain was found to be obtained with an abrupt emitter and reduced by base grading, with ft proportional to the collector current. At high bias, current gain was found to be enhanced by emitter grading, while base grading was found to reduce current gain if without emitter grading. Anticipated grading effects of lower band spikes and base transit time are found to be greatly modified by the changes of carrier density, lifetime, diffusion potential, and series resistance with bandgap  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号