首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用复合添加BaCuO_2-CuO(以下简称BCC)、ZnO-B_2O_3-SiO_2(以下简称ZBS)等烧结助剂的方法,研究了Ba_4(Nd_(0.85)Bi_(0.15))_(28/3)Ti_(18)O_(54)陶瓷(以下简称BNT)低温烧结的烧结特性和微波介电性能。结果表明:复合添加(均为质量分数)2.5%BaCuO_2-CuO和5%ZnO-B_2O_3-SiO_2后可以在1050℃烧结成致密瓷,气孔率为5.73%,在5.6 GHz,相对个电常数ε_r为64.25,Q·f值为2026 GHz,频率温度系数τ_f为+26.4×10~(-6)℃~(-1),可望实现与Cu电极浆料低温共烧。  相似文献   

2.
用固相反应法制备了一系列铌锑酸镁(Sb含量x≤2)陶瓷,研究了该陶瓷的烧结性能、物相结构和微波介电性能。结果表明,当x≤1.6时,铌锑酸镁形成了连续固溶体,少量Sb5+对Nb5+的取代(0.4≤x≤0.8),使得陶瓷最佳烧结温度从1400℃降到1300℃,而材料εr和Q·f值没有降低。1300℃,5h烧结的铌锑酸镁陶瓷具有优异的微波介电性能:εr为11.61,Q·f为169820GHz,τf为–54.4×10–6℃–1。  相似文献   

3.
<正> 据日本专利特公昭61-11404报导,日本研制出一种低温烧结的改性钛酸钡高介陶瓷材料。它是在钛酸钡主材料中,添加2~20%(重量)的铌酸铅。 该组成物的烧结温度为1010~1270℃,  相似文献   

4.
采用Ba-Bi复合掺杂对Y2O3·2TiO2微波介质陶瓷进行改性,以降低其烧结温度并改善其介电性能。在固定Bi2Ti2O7掺杂量为质量分数8%的基础上,研究了BaCO3掺杂量对陶瓷微结构、烧结性能和介电性能的影响。结果表明:当w(BaCO3)为1%时,在较低的烧结温度(约1280℃)下保温2h制备了一种新型中介电常数Y2O3·2TiO2微波介质陶瓷。该陶瓷具有较好的介电性能:在1MHz下,εr≈72.5,tanδ≈2.5×10-3;在微波频率(5.03GHz)下,εr=72.1,Q·f值为2241.0GHz。  相似文献   

5.
Li_2O-B_2O_3-SiO_2掺杂低温烧结CLST陶瓷的介电性能   总被引:3,自引:1,他引:2  
通过Li2O-B2O3-SiO(2LBS)玻璃的有效掺杂,低温液相烧结制备了16CaO-9Li2O-12Sm2O3-63TiO(2CLST)陶瓷。研究了LBS掺杂量对其烧结性能、相组成及介电性能的影响。结果表明:通过掺杂LBS,使CLST陶瓷的烧结温度由1300℃降至1000℃,且无第二相生成。随LBS掺杂量的增加,tanδ显著降低,τf趋近于零。当w(LBS)为10%时,CLST陶瓷在1000℃烧结3h获得最佳介电性能:tanδ为0.0045,τf为4×10–6/℃,虽然εr由105.0降至71.0,但仍属于高εr范围。  相似文献   

6.
(Zr0.8Sn0.2)TiO4陶瓷预烧和烧结工艺研究   总被引:6,自引:2,他引:4  
研究了预烧和烧结工艺对(Zr0.8Sn0.2)TiO4系统陶瓷材料介电性能的影响,发现预烧温度对介电常数ε影响不大,但预烧温度过高或过低会使介电损耗tanδ增大;在一定范围内提高烧结温度能使ε增加,但烧结温度过高或过低会使tanδ增大。XRD分析表明,在1100°C预烧,1150°C烧结的该系统主晶相是(Zr0.8Sn0.2)TiO4。该系统具有优良的介电性能(1MHz):ε≈38,tanδ≤10-4,体电阻率ρv≥1013·cm,温度系数αc=0±30×10-6/°C。  相似文献   

7.
烧成工艺对CaCu_3Ti_4O_(12)陶瓷介电性能的影响   总被引:4,自引:2,他引:2  
采用短时间烧结制备了CaCu3Ti4O12(CCTO)陶瓷,并详细研究了预烧温度、烧结温度等工艺对结构和性能的影响。研究了εr和tanδ随测试频率(20Hz~1MHz)、温度(25~150℃)的变化规律。结果表明:CCTO陶瓷的性能对烧成工艺非常敏感。较低的预烧温度较容易获得高εr(εr为11248)的CCTO陶瓷。  相似文献   

8.
BaO-Y_2O_3-5TiO_2系微波介质陶瓷预烧温度研究   总被引:2,自引:0,他引:2  
采用传统电子陶瓷工艺制备了BaO-Y2O3-5TiO2系微波介质陶瓷。研究了预烧温度对其烧结性能、相组成、显微结构和微波介电性能的影响。结果表明:合适的预烧温度能优化陶瓷的烧结性能,提高其致密性和介电性能。以不同预烧温度制备的BaO-Y2O3-5TiO2系微波介质陶瓷,其主晶相都是烧绿石结构的Y2Ti2O7。最佳预烧温度为1100℃,在烧结温度为1240℃时,εr为54,tanδ为9×10–4,Q值为3450(4.27GHz)。  相似文献   

9.
Ca_(0.125)(Li_(1/2)Sm_(1/2))_(0.875)TiO_3微波介质陶瓷的低温烧结   总被引:1,自引:1,他引:0  
研究了复合烧结助剂Na2O-CaO-B2O3(NCB)氧化物和Li2O-B2O3-SiO2-CaO-Al2O3(LBSCA)玻璃料的添加量对Ca0.125(Li1/2Sm1/2)0.875TiO3陶瓷相结构、烧结性能及介电性能的影响。当w(NCB)为10%,w(LBSCA)为1%~5%时,该陶瓷为斜方钙钛矿结构。随w(LBSCA)的增加,致密化温度和饱和体积密度降低,εr、Q·f值及τf呈下降趋势。当w(NCB)为10%,w(LBSCA)为2%时,陶瓷可在900℃烧结获得最佳性能:εr为63.00,Q·f为1260GHz,τf为–9.02×10–6℃–1。  相似文献   

10.
利用水热法分别合成NaNbO3与KNbO3粉体,将其按摩尔比1∶1充分混合均匀后,于1 040~1 100℃常压烧结2h制备了(K,Na) NbO3 (KNN)无铅压电陶瓷.研究了烧结温度对KNN陶瓷的相组成、显微结构、体积密度及电学性能的影响.X线衍射(XRD)结果显示,混合粉体经烧结后形成了单一的铌酸钾钠固溶体;场发射扫描电镜(FESEM)测试分析表明,适当提高烧结温度能促进陶瓷晶粒长大,提高其致密度,从而改善样品的压电性能.当烧结温度为1 080℃时,陶瓷的体积密度达到最大值(4.46 g/cm3),此时性能最佳:压电常数d33=96 pC/N,平面机电耦合系数kp=0.37,品质因数Qm=108,介电常数εr=450,介电损耗tanδ=0.024和居里温度Tc=417℃.  相似文献   

11.
采用传统的两步固相反应法制备了一种低温烧结的CuBBiO_4-(Ba_(0.8)Sr_(0.2))(Ni_(1/3)Nb_(2/3))-(Ba_(0.8)Sr_(0.2))(Zr_(0.5)Ti_(0.5))(BBC-BSNN-BSZT)压电陶瓷,并研究了CuBBiO_4(BBC)掺杂量对陶瓷微观形貌、相结构、介电、压电性能和烧结温度的影响。研究结果表明,制备的陶瓷样品为单一的钙钛矿相,未发现其他杂相;掺杂的BBC低熔点化合物在烧结中提供适量液相,促进烧结,样品可在925℃烧结致密。该压电陶瓷材料的居里温度由158℃提升到230℃;当掺杂w(BBC)=0.75%(质量分数)时,陶瓷达到最佳压电性能:压电常数d_(33)=613pC/N,机电耦合系数k_p=0.7,介电常数ε_r=3 926,介电损耗tanδ=0.005 2,品质因数Q_m=70。居里温度T_C=227℃。  相似文献   

12.
采用传统固相反应法制作(Ni1/3Nb2/3)0.7Ti0.3O2微波陶瓷,研究了CuO掺杂对所制陶瓷低温烧结性能、微观结构、相构成及微波介电性能的影响。结果表明,掺杂少量的CuO就能显著降低(Ni1/3Nb2/3)0.7Ti0.3O2陶瓷的烧结温度,且能改善陶瓷τf。当CuO掺杂量(质量分数)为1.0%时,(Ni1/3Nb2/3)0.7Ti0.3O2在950℃烧结,显示出良好的微波介电性能:εr=67.65,Q·f=3708GHz,τf=14.3×10-6/℃。  相似文献   

13.
首先用sol-gel法制得了Pb0.95Sr0.05(Zr0.52Ti0.48)O3纳米粉料(简称PZT),然后采用固相反应法制备了ζ(PZT:NiCuZn)为1:9和3:7的两种复合材料。研究Ni0.26-xCu0.19+xZn0.55Fe2O4铁氧体的组成对低温烧结复合材料的显微结构、电磁性能的影响。结果表明:当x=0.02的化学组成为主配方时,复合材料可实现900℃低温烧结,且ζ(PZT:NiCuZn)为1:9的复合材料的μi高达92,Q值为39,ε′为19;而ζ(PZT:NiCuZn)为3:7的复合材料的μi为26,Q值为19,ε′为32。  相似文献   

14.
纳米粉体对低温烧结CMS微波介质陶瓷的改性   总被引:2,自引:1,他引:1  
在低温烧结的CaO-MgO-SiO2(CMS)陶瓷中,引入粒径为50~100nm的Ca0.7Mg0.3SiO3纳米粉体,研究了纳米粉体对陶瓷烧结行为和介电性能的影响。研究发现:添加质量分数为5%的纳米粉体能有效促进陶瓷的烧结,拓宽其烧结温度范围,提高其微波介电性能。在890℃烧结后得到良好的介电性能:εr=9.31,Q·f=22574GHz。通过对电镀前后性能的对比发现,添加适量纳米粉体,可消除陶瓷中的大气孔,有效防止电镀过程中电镀液渗入陶瓷体,从而大大改善电镀后陶瓷的介电性能。  相似文献   

15.
采用固相法在880~975℃下烧结制备了添加w(CuO)为2.00%,w(B2O3)为3.00%及w(SnO2)为0.15%的ZnNb2O6-1.75TiO2基复合微波介质陶瓷。研究了该陶瓷的低温烧结机理、微波介电性能及其在多层片式陶瓷电容器中的应用。结果显示:随着烧结温度的提高,物相由Zn2TiO4,Zn0.17Nb0.33Ti0.5O2,ZnNb2O6向ZnTiNb2O8转变,εr和τf减小,Q·f升高。但当t≥975℃时,出现过烧现象,晶体缺陷增多恶化了材料的Q·f。在950℃烧结4h时,得到最好的介电性能:εr=36.7,τf=–22.6×10–6/℃,Q·f=18172.2GHz。且在此温度下制备的多层片式陶瓷电容与内电极Ag90Pd10的兼容性良好,Res为0.3426Ω,tanδ为9×10–5,可靠性良好。  相似文献   

16.
中温烧结CLNT微波介质陶瓷   总被引:2,自引:0,他引:2  
研究了Bi2O3对CLNT陶瓷的烧结性能、物相和介电性能的影响。添加4%~10%(质量分数)Bi2O3,在液相Bi2O3和Bi2O3-TiO2两重作用下,烧结温度降至1050℃。XRD分析表明:斜方钙钛矿相出现分裂,产生第二相。随Bi2O3含量增加,Q·f值下降,τf向负温度系数方向移动,当04%,εr因气孔增加而减小。4%Bi2O3试样在1050℃烧结4h,εr为37.8,Q·f为11030GHz,τf为12×10–6℃–1。  相似文献   

17.
探讨了研磨时间,黏合剂浓度、用量,压力,保压时间,预烧温度,烧结温度,烧结时间等工艺因素对Ba6-3x(Sm1-yNdy)8+2xTi18O54陶瓷(x=0.6,y=0.2,0.3)微波性能的影响,试验结果表明,在其他工艺因素控制得当时,预烧温度和烧结温度对微波性能的影响最大。在预烧温度1050℃,烧结温度1200℃下,其微波特性参数εr=76.19,Q·f=10.2THz,(f=4.5GHz)。本系统陶瓷的烧结温度比一般文献低100℃左右,性能仍不错。进一步研究可为制备低温烧结微波陶瓷提供可能。  相似文献   

18.
以(MgCO3)4·Mg(OH)2·5H2O、ZnO、TiO2为原料,固相反应法烧结成瓷.运用XRD、SEM、阻抗分析仪和网络分析仪对(Mgt1-(x)Zn(x))TiO3(MZT)材料的相组成、微观显微结构及微波介电性能进行分析.系统研究了预烧温度对MZT系统介电性能的影响.结果表明,不同的预烧工艺可影响MZT材料的烧结性能和微波介电性能.(Mg0.9Zn0.1)TiO3材料1 170℃预烧,1 250℃烧结时,具有较好的介电性能:介电常数εr=17.7,品质因数Q·(f)=0.1 PHz.频率温度系数(τ(f))约为-79X10-6/℃.(Mg0.7Zn0.3)TiO3材料1 100℃预烧,1 250℃烧结时,其εr=18.7,Q·(f)=90 THz,τ(f)约为-50×10-6/℃.  相似文献   

19.
采用固相反应法制备了(1-x)CaWO4-xLi2WO4(0≤x≤0.14)微波陶瓷,研究了Li2WO4作为第二相对CaWO4微波陶瓷的低温烧结特性和微波性能的影响。结果表明,Li2WO4相的存在能明显降低CaWO4的烧结温度,并且随着x的增加,(1-x)CaWO4-xLi2WO4(0≤x≤0.14)陶瓷体系的最佳烧结温度降低。当x=0.1,在900℃下烧结2h,该陶瓷材料的介电常数εr=9.002,品质因数与频率之积Q×f=11.76×104 GHz,谐振频率温度系数τf=-55×10-6/℃。在此基础上采用w(CaTiO3)=5.0%调节其谐振频率温度系数到0,调节后的微波介电性能为εr=10.312,Q×f=5.36×104 GHz,τf约为0  相似文献   

20.
对CuO、V2O5掺杂的(1–x)BiNbO4-xZnTaO6(x=0.05~0.15)陶瓷体系结构和介电性能进行了研究。试验结果表明,940℃以下,体系为斜方BiNbO4和斜方ZnTaO6的复相结构;掺杂CuO、V2O5使得体系在较低温度下即可烧结成瓷,随着(1–x)BiNbO4-xZnTaO6体系中x的增加,陶瓷表观密度上升,εr下降,温度系数、损耗则呈增加趋势。x=0.05,910℃烧结保温2h有较好的微波性能,εr约为40,Q·f值达25000GHz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号