首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对软岩保护层开采后上覆被保护煤层卸压瓦斯治理问题,以淮北芦岭煤矿首例软岩保护层开采试验为工程背景,采用综合研究方法研究软岩保护层开采覆岩采动裂隙带演化特征。结果表明:Ⅲ11软岩保护层开采后覆岩冒落带和裂隙带最大发育高度分别为10.1~12.4,52.7~59.95 m,采空区侧及上覆被保护层煤层下部存在竖向裂隙发育区和远程离层裂隙发育区;设计地面采动井和拦截钻孔抽采覆岩8、9煤层卸压瓦斯,优化地面采动井终孔位置垂直方向距顶板法距20 m,倾斜方向距风巷或机巷平距35 m,拦截钻孔终孔位置距9煤底板5 m。考察期卸压瓦斯抽采实践表明,软岩保护层开采后覆岩"两带"发育高度的判断和卸压瓦斯富集区域的辨识是合理正确的。  相似文献   

2.
针对高瓦斯综采工作面U型通风条件下上隅角瓦斯超限问题,分析了定向钻孔代替尾巷抽采卸压瓦斯的必要性及可行性,阐述了卸压瓦斯抽采原理;利用物理相似模拟及理论分析,分析了采动覆岩裂隙演化规律,确定了定向钻孔参数,并进行现场工程应用。结果表明:随着工作面推进,试验工作面采动覆岩形成不规则冒落带、规则冒落带、裂隙带、弯曲下沉带,其中规则冒落带高度为17.9 m(采高的4.48倍),裂隙带高度为60.36 m(采高的15.09倍);定向钻孔与回风巷平距为8~20 m,与煤层顶板垂距平均18.5 m;利用定向钻机施工钻孔偏移量较小,定位准确,瓦斯抽采纯量平均6.37 m~3/min,占瓦斯涌出量的8.59%,实现了定向钻孔代替尾巷治理瓦斯效果,保证了工作面安全回采。  相似文献   

3.
为了深入了解覆岩采动裂隙带内瓦斯富集运移区的变化规律,提高矿井采空区瓦斯抽采能力。以覆岩裂隙演化理论为基础,针对山西王家岭矿主采工作面,运用物理相似模拟的方法,研究了工作面采动影响下覆岩裂隙带及瓦斯富集运移区的变化规律,并以此研究结果,进行现场高位定向长钻孔优化设计。研究结果表明:上覆岩层裂隙及瓦斯富集运移区受采动影响,在第四次周期来压后裂隙充分发育,裂隙带高度在28~92.3m,但瓦斯富集运移区发育高度在第二次周期来压后稳定在52m以内。在现场试验中,对高位定向长钻孔参数进行优化调整,得到位于富集区内的钻孔抽采效果明显高于位于富集区外的抽采效果,且高位定向长钻孔稳定抽采期间抽采瓦斯占绝对瓦斯涌出量的55%~75%。研究结果为采动覆岩裂隙瓦斯富集运移区辨识、覆岩裂隙带瓦斯精准抽采提供一定的理论基础。  相似文献   

4.
针对煤矿采空区上覆岩层裂隙发育,采动裂隙瓦斯流动规律等对合理确定高位钻孔抽采区域的重要性,对采空区上覆岩层的裂隙发育规律和采动裂隙场的瓦斯流动规律进行分析,从采空区覆岩"竖三带"裂隙分布特征、采动裂隙"O"形圈以及U型通风采动裂隙瓦斯流动规律出发,找出采空区对工作面上隅角瓦斯超限影响较大的区域,得出高位钻孔的理论最佳抽采区域大致为工作面后方50 m区域,这个区域的覆岩裂隙发育情况是高位钻孔层位优化设计的关键,为高位钻孔抽采参数优化提供了理论基础。  相似文献   

5.
为了有效解决临近层卸压瓦斯通过采动裂隙扩散至本煤层工作面,导致采空区上隅角及工作面回风巷瓦斯浓度超限的问题。以某矿9103工作面为工程背景,采用理论分析与数值模拟相结合的手段,对工作面上覆岩层裂隙演化规律进行分析研究。研究表明:采用UDEC数值模拟软件分析工作面上覆岩层破坏时垮落带和裂隙带演化规律及裂隙带高度分布范围与理论计算结果基本一致,覆岩垮落带最大高度4.9 m,裂隙带最高13.44 m。基于此,确定了工作面覆岩高位钻孔设计方案:在9#煤层上方10 m位置的粉砂岩中,采用高位钻孔技术抽采瓦斯,整体抽采浓度较高,进一步验证了高位钻孔布置参数设计的合理性。  相似文献   

6.
为了提高低透气性煤层采空区覆岩卸压瓦斯的抽采效果,采用微震监测技术,对工作面推进过程中采空区覆岩微震事件的演化过程进行了监测,进而分析了采空区覆岩的空间破裂特征,并依据微震监测分析得到的采动裂隙带位置及周期来压步距,设计了高位钻孔瓦斯抽采参数,检验了瓦斯抽采效果。结果表明:工作面回采期间周期来压步距在16 m左右,形成的采动裂隙带高度在50 m左右,据此设计的高位瓦斯抽采钻孔瓦斯抽采量和抽采体积分数分别提升了100%和150%,表明微震监测技术可准确探测采空区覆岩高位瓦斯富集区的空间位置,为瓦斯抽采钻孔设计提供了依据。  相似文献   

7.
为了明确大倾角高瓦斯煤层采动覆岩裂隙发育情况,提高卸压瓦斯抽采效果,运用了微震监测技术对新疆硫磺沟煤矿(4-5)06工作面推进过程中采动上覆岩层的微震事件进行实时记录,据此分析了采动上覆岩层的裂隙发育形态特征和演化趋势,且运用经验公式对微震监测结果加以验证,并结合监测结果对高位钻场瓦斯抽采参数进行了优化,检验了卸压瓦斯抽采效果。结果表明:(4-5)06工作面周期来压步距约15 m,采动覆岩断裂带高度约60 m,裂隙发育形态整体呈不对称椭抛带,其中心对称轴向回风巷一侧偏移。以此为依据,对高位钻场瓦斯抽采钻孔参数进行优化,设计高、中、低3个层位钻孔,且全部布置于靠近工作面一侧的瓦斯优势运移通道带以内区域。通过分析现场瓦斯抽采监测装置记录的数据发现,高位钻场中高、中、低3个层位钻孔瓦斯抽采浓度及抽采流量均呈现先增大后减小的趋势,且中层位钻场瓦斯抽采浓度明显高于其余层位。优化后高位钻场瓦斯抽采流量为63~85 m3/min,钻场瓦斯抽采体积分数为6.22%~10.94%,井下回风巷及上隅角瓦斯浓度均低于阈值1%,有效保证了工作面的安全推进。实践表明微震监测技术可有效运用于...  相似文献   

8.
以顶板卸压带瓦斯抽采为主的瓦斯治理措施是有效防止回采工作面上隅角瓦斯超限的手段之一,采动裂隙是瓦斯运移的主要通道,采动裂隙场的分布决定着瓦斯抽采钻孔的布置层位,因而其发育高度的精准确定是该手段有效利用的前提。通过UDEC数值模拟确定了大水头煤矿东104工作面采动裂隙场发育高度,并通过数值计算得出该工作面初采期覆岩裂隙发育模型。结果表明:东104工作面19.18 m以下区域为垮落带,裂隙带最大发育高度为55.94 m.初采期间,采动裂隙场发育高度与工作面推进长度之比为0.559 4,初采期覆岩裂隙发育沿走向方向顶部呈尖顶或椭球状,而沿倾斜方向呈平顶状,端部都呈逐渐降低的形态。  相似文献   

9.
为了解决沙曲矿近距离高瓦斯煤层群开采过程中瓦斯超限这一难题,运用理论分析和数值分析相结合的方法对沙曲矿南翼4号煤开采采动裂隙演化规律进行了分析,确定了高位裂隙钻孔组的合理布置位置。结果表明:采空区垮落带和裂隙带高度分别为8、36.5 m,贯通裂隙带距工作面顶板垂高8~23 m,非贯通裂隙带距工作面顶板垂高23~42 m,工作面上方22 m左右裂隙分布密集且覆岩整体结构相对稳定,将钻孔延深至该区域能有效提高瓦斯抽采的浓度、抽采量和稳定性。现场实践表明:利用DDR-1200型千米定向钻机,将钻孔布置在距工作面上方22 m处时,瓦斯抽采效果明显,平均瓦斯抽采体积分数90.68%,平均瓦斯抽采纯量达11.58 m3/min。  相似文献   

10.
为了研究倾斜煤层条件下,采动覆岩裂隙分布规律与卸压瓦斯抽采技术,采用理论分析和数值模拟的方法,对采场覆岩应力、位移以及裂隙分布情况进行了分析,并依据研究结果,对试验工作面高位导流钻孔布置参数进行了优化设计。结果表明:工作面上端头顶板卸压区域范围大于下端头区域,关键层的卸压段靠近工作面上部,覆岩垮落破断后,工作面上部垮落岩体位移明显大于下部;裂隙网络中,下部冒落岩体裂隙处于相对闭合状态,沿工作面向上,裂隙开度逐渐增大;卸压瓦斯运移通道在倾斜方向上具有不对称性;沿工作面回风巷侧冒落带轮廓线布置高位导流钻孔,并配合相邻钻场之间的有效搭接抽采可使抽采效果保持稳定;单一钻孔全生命周期可分为远距离、有效和近距离抽采3个阶段,随着钻孔层位的增加,抽采效果逐渐变优,远距离抽采阶段长度减小,有效抽采阶段长度增加。实践结果表明,瓦斯抽采效果良好,验证了依据此方法布置高位导流钻孔的合理性。  相似文献   

11.
根据对采空区覆岩裂隙发育及瓦斯运移情况进行分析,在开采煤层顶板采动裂隙带内布置高位瓦斯抽排巷抽采采空区卸压瓦斯,合理确定高抽巷设置层位,通过对高抽巷抽采厚煤层综采工作面瓦斯的抽采效果考察,结果表明,高抽巷瓦斯抽采有效保证了工作面安全高效生产,对类似条件下的工作面瓦斯治理具有一定的借鉴意义。  相似文献   

12.
针对崔家沟煤矿2303综放工作面瓦斯涌出量高易造成瓦斯超限的安全难题,应用采动裂隙椭抛带理论,在分析特厚煤层综放开采覆岩破坏特征的基础上,采用物理相似模拟和UDEC数值模拟试验研究了采空区覆岩"三带"演化规律,建立了采动裂隙椭抛带数学模型,确定出了覆岩裂隙瓦斯抽采有利区,提出了低-中-高位钻孔相组合的瓦斯抽采方案,并进行了工程应用。结果表明:2303综放工作面垮落带高度为33 m,断裂带高度为110 m,距离煤层底板35 m以上55 m以下与外椭抛面交集的范围为瓦斯抽采的有利区域;通过低-中-高位钻孔抽采方案的实施,上隅角瓦斯浓度小于0.6%,回风巷瓦斯浓度小于0.5%,有力保障了工作面的安全高效回采。  相似文献   

13.
为了研究综采工作面卸压瓦斯覆岩裂隙优势通道的演化规律,以采动裂隙椭抛带理论为基础,工作面推进速度为关键参数,构建采动卸压瓦斯优势通道数学模型,并针对山西和顺某高瓦斯矿井主采工作面,开展综采工作面在不同推进速度条件下的卸压瓦斯覆岩裂隙优势通道演化规律物理相似模拟试验。研究结果表明:加快推进速度,三带高度降低,平均来压步距增大,优势通道在上覆岩层的空间位置也随之降低,优势通道发育的高度、宽度、垮落角和范围随着推进速度加快而减小。随着推进速度的加快,优势通道离层率和贯通度逐渐变小。随着工作面的推进,优势通道的分形维数由小到大对应的推进速度依次为7、5、3 m/d,呈现出降维的趋势。在现场高位钻孔试验中,对工作面推进速度不同时的高位钻孔参数进行优化调整,得到高位钻场抽采瓦斯占绝对瓦斯涌出总量的49.94%~89.88%,并且使得上隅角及回风巷平均瓦斯体积分数维持在0.27%以下及0.32%以下,从而保证工作面安全高效的回采。研究结果可为不同推进速度下采动覆岩卸压瓦斯富集区的识别提供一定的理论基础。  相似文献   

14.
为了解决高强度综放开采条件下的工作面卸压瓦斯治理问题,以王家岭矿12302综放工作面为研究对象,采用微震监测技术对工作面推进过程中产生的微震事件进行监测记录,配合工作面瓦斯涌出量监测,对工作面在推进过程中上覆岩层的破断情况和裂隙演化进行了分析,得出了微震事件发生与瓦斯涌出定量的表征关系,然后对工作面高位钻孔布置参数进行了调整,并对调整后的钻孔抽采效果进行了检验。结果表明:12302工作面周期来压步距在21 m左右,采动覆岩裂隙带主要分布在采空区顶板两侧,高度在55m左右。工作面瓦斯涌出量和微震事件的频次呈线性相关,拟合公式为y=4.82+0.0037x,可以根据此公式和监测所得的微震事件频次来预测工作面的瓦斯涌出量。调整布置参数后的高位钻孔瓦斯平均抽采浓度和抽采纯量为7.9%和1.16 m3/min,抽采效果较好。  相似文献   

15.
为了研究采动覆岩中卸压瓦斯的运移规律,以采动裂隙椭抛带理论为基础,构建采动卸压瓦斯优势通道采高效应的空间形态模型,针对山西和顺某高瓦斯矿井主采工作面,运用物理相似模拟的方法,揭示综采工作面采动卸压瓦斯运移优势通道的采高控制机理,以此为依据,在现场实施高位钻孔抽采卸压瓦斯试验。研究结果表明:在上覆岩层中,优势通道左右边界离层量发生明显突变。随采高的增加,优势通道高度分别发育至距离煤层底板29.5,48,60 m,而宽度则从28 m变化到33 m。离层率的峰值距煤层底板30 m上移至60 m,贯通度明显增大。6 m采高优势通道的分形维数分别是4,2m采高的1.07,1.23倍,呈现着升维的趋势。在现场高位钻孔试验中,对工作面采高不同时的高位钻孔参数进行优化调整,得到高位钻场抽采瓦斯占绝对瓦斯涌出总量的49.94%~89.88%,并且使得上隅角及回风巷平均瓦斯体积分数维持在0.27%以下及0.32%以下,从而保证工作面安全高效的回采。研究结果为采动覆岩卸压瓦斯富集区的识别提供一定的理论基础。  相似文献   

16.
马小敏 《现代矿业》2019,35(8):55-57
为解决高瓦斯综采工作面采空区瓦斯涌出量大而导致的上隅角瓦斯超限问题,提出采用高位定向长钻孔瓦斯抽采技术对采空区瓦斯进行治理。数值模拟计算了工作面开采时上覆岩层裂隙带发育高度,设计了合理的定向长钻孔抽采参数。现场应用结果表明:采用高位定向长钻孔瓦斯抽采技术,瓦斯抽采浓度高、流量稳定、有效抽采时间长,回采期间尚未发生上隅角瓦斯超限,瓦斯抽采效果显著,保证了矿井安全高效生产。  相似文献   

17.
谢小平  耿耀强 《煤炭工程》2019,51(12):101-105
针对低透气高瓦斯近距离煤层群开采邻近煤岩层大量卸压瓦斯涌入工作面的问题,采用理论分析和数值模拟相结合的方法,分析了工作面顶板裂隙与卸压煤层瓦斯富集的关系,模拟了工作面顶板采动裂隙分布与演化规律|提出了顶板千米定向钻孔抽采采空区上部集聚卸压瓦斯的技术方案|并结合现场14301工作面的实际条件,确定了顶板千米定向钻孔布置的技术参数。现场应用表明:在顶板千米钻场抽采瓦斯观测期间内,瓦斯抽采浓度始终保持在25%以上,最高达到80%,瓦斯抽采纯量在2.0~3.0m/min之间,并且有效抽采浓度的持续时间长,取得了良好的瓦斯抽采效果。  相似文献   

18.
为改善成庄矿采空区高位钻孔瓦斯抽采效果,采用理论计算和数值模拟的方法研究采动裂隙演化规律,分析顶板裂隙发育范围,通过在裂隙带范围布置不同层位的高位钻孔模拟研究了其瓦斯抽采效果和瓦斯治理效果,得出了高位钻孔最佳布置层位。结果表明:顶板岩层垮落、裂隙发育贯通整体呈拱形分布,裂隙带范围为21.90~62.54 m;将高位钻孔布置在距煤层顶板45 m的位置,既可以抽采到高浓度瓦斯,又能对工作面上隅角瓦斯起到良好的治理作用;现场施工定向高位钻孔后,瓦斯抽采浓度、纯量可以在较长的一段推进度内保持较高水平,工作面回采期间,上隅角最大瓦斯体积分数为0.69%,保证了安全生产。  相似文献   

19.
为了降低采煤工作面瓦斯浓度,采用保护层开采的方式对煤层进行卸压,以山西常庄矿为试验矿井,通过数值模拟对保护层开采后煤层卸压以及瓦斯运移进行研究,根据卸压和瓦斯运移特征确定了瓦斯抽采钻孔技术参数,并对抽采效果进行了检验,研究结果表明:冒落带高度为4.8m,裂隙带高度为25.2m,两侧近煤层区域裂隙发育,为裂隙发育的聚集区,形成"裂隙河";当采宽不断增大时,卸压强度增大,煤层内部应力整体呈"W"型分布;被保护层卸压分为四个区:原始压力区、压力集中区、过渡区、完全卸压区;瓦斯抽放孔最佳参数:钻孔倾角不得大于70°,封孔长度为10m,钻孔间距为30m,孔口负压为12.2k Pa;卸压瓦斯抽采浓度较卸压前大幅提高,保护层开采对于被保护层卸压起到了作用。  相似文献   

20.
为了有效提高谢桥煤矿1242(1)工作面的瓦斯治理水平,采用实验室相似模拟的方法,分析了1242(1)工作面开采过程中覆岩的裂隙发育规律,判定11-2煤层上覆岩层冒落带和裂隙带分布范围,获取了钻孔法距参数的最佳范围,为顶板走向高位钻孔的设计提供参考依据。现场考察表明,顶板走向高位钻孔的瓦斯抽采浓度平均达到31.1%,平均抽采量为14.85m3/min,达到理想抽采效果,保证了综采工作面安全高效生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号