首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
拜耳法赤泥中铁的强磁选预富集-深度还原-弱磁选试验   总被引:1,自引:0,他引:1  
拜耳法生产Al2O3过程中产生的赤泥中含有大量的难回收铁矿物,有效地回收这些铁矿物既是对资源的高效利用,又有利于减少污染物排放。采用强磁选预富集-深度还原-弱磁选工艺对铁品位为39.42%的山东某拜尔法赤泥进行了选铁试验。结果表明:在磨矿细度为-0.074 mm 占80.75%,强磁选背景磁感应场强为1.2 T情况下,可获得铁品位为52.89%、铁回收率为59.85%的强磁选预富集精矿;强磁选预富集精矿在烟煤用量为24.27%(烟煤与强磁选预富集精矿的质量比),深度还原温度为1 300 ℃、时间为45 min,还原焙烧产物磨矿细度为-0.074 mm占38%,弱磁选磁场强度为72.03 kA/m情况下,可得到铁品位为91.25%,铁作业回收率为96.90%、对赤泥回收率为57.99%的金属铁粉,较好地实现了赤泥中铁矿物的回收。试验确定的工艺简单、稳定、可靠,有较高的工业应用价值。  相似文献   

2.
红土矿含碳球团还原富集镍铁的工艺研究   总被引:2,自引:1,他引:1  
为了解决低品位红土镍矿的合理利用问题, 以活性炭粉为还原剂, 采用直接还原富集-磁选分离技术, 将矿石中的镍和铁直接还原制成金属镍和铁, 并通过磁选分离使其得到富集。研究确定了最佳工艺条件为: 配炭量4%、还原温度1 350 ℃、焙烧时间120 min。此条件下, 镍和铁的回收率分别为87.6%和95.3%。  相似文献   

3.
对国外某高铝赤褐铁矿进行了选矿试验研究。采用还原磁化焙烧-磁选工艺, 可获得精矿铁品位58.26%、铁回收率80.53%的试验指标; 采用钠化还原磁化焙烧-磁选工艺, 可获得精矿铁品位63.48%、回收率95.45%的试验指标。探索了在富集铁的同时富集镍、降低铁精矿中Al2O3含量的可行性。  相似文献   

4.
红土镍矿深度还原-磁选富集镍铁工艺研究   总被引:1,自引:0,他引:1  
对品位低、富集困难的红土镍矿进行了深度还原-磁选工艺方案的研究,深入探讨了还原温度、还原时间、配碳系数、料层厚度、配煤粒度、矿石粒度对深度还原-磁选的影响,得出在还原温度1 275 ℃,还原时间60 min,配碳系数3,料层厚度20 mm,还原煤粒度-1.5 mm,矿石粒度-2 mm条件下还原的红土镍矿,经过磁选可得到镍、铁品位分别为4.59%和25.12%的镍铁产品,据此得出深度还原-磁选对红土镍矿镍、铁富集有一定的作用。  相似文献   

5.
以某赤褐铁矿为研究对象,根据赤褐铁矿的矿石特性,采用还原焙烧—磁选工艺对其进行了试验研究。结果表明:还原焙烧—磁选工艺可有效地富集该赤褐铁矿中的铁,最终得到了铁品位为55.77%、回收率为85.48%的铁精矿。  相似文献   

6.
超微细贫赤铁矿直接还原-磁选试验研究   总被引:3,自引:1,他引:2  
湖南某赤铁矿石属铁质板岩,铁品位低,主要铁矿物赤铁矿粒度大部分仅3~5 μm,且赤铁矿与石英嵌布关系复杂,采用常规选矿工艺不能有效分选。为此,采用煤基直接还原-磁选工艺处理该矿石,实现了铁的有效富集:原矿在还原温度为950 ℃、还原时间为80 min、煤/矿质量比为2.5∶1的条件下通过煤基直接还原转化为金属化率为93.82%的还原矿;还原矿经3段磨矿、3段磁选,可获得铁品位为69.54%、铁回收率为65.58%(对还原矿)、金属化率高达98.02%的铁精矿。  相似文献   

7.
针对含锌、铁氧化矿石,采用浮选、磁选、重选等常规选矿方法,碱性浸出、硫酸浸出等常规浸出方法,常规还原焙烧-磁选以及深度还原-磁选等方法,考察了相关因素对锌、铁回收的影响。研究结果表明,浮选、磁选、重选等常规选矿方法,碱性浸出、硫酸浸出等常规浸出方法以及常规还原焙烧-磁选方法均不能使锌、铁有效富集,而采用深度还原-磁选方法,获得的铁精矿铁品位与铁回收率均在90%以上,金属化率在92%以上,锌挥发率在97%以上,实现了锌、铁综合回收。  相似文献   

8.
基于深度还原的某稀土尾矿选铁试验   总被引:1,自引:0,他引:1  
将某稀土尾矿磁选预抛尾后进行了深度还原-弱磁选工艺技术条件研究,并对深度还原产物和磁选铁粉进行了XRD分析。结果表明,试样适宜的深度还原条件为褐煤用量占试样与褐煤总质量的10%、还原温度为1 200 ℃、还原时间为60 min,还原产物磨矿细度为-74 μm 85%,弱磁选磁场强度为118 kA/m,最终获得了铁品位为91.00%、还原产物弱磁选作业回收率为90.83%、铁综合回收率达78.20%的磁选铁粉;深度还原使还原对象中的复杂铁矿物大都还原成了单质铁,还原产物具有较好的磨矿-弱磁选效果。  相似文献   

9.
为了提高某低品位菱铁矿的铁品位,采用了煤基直接还原-磁选工艺,对菱铁矿块矿进行了焙烧条件试验。结果表明:在焙烧温度1050℃,焙烧时间100 min,菱铁矿粒度10~16 mm,煤的粒度0~5 mm,煤矿质量比1.5:1的条件下进行还原焙烧,可得到金属化率93.13%的焙烧矿;该焙烧矿在磨矿粒度为-0.074 mm 80%以上,磁场强度为0.1 T,磁选时间为15 min的条件下进行磁选试验后可得到精矿铁品位为91.11%,铁回收率为97.15%的铁粉。且-25 mm的菱铁矿块矿全粒级直接还原效果良好,焙烧矿的金属化率可达到92.6%以上,磁选后的精矿铁品位高达89.4%,回收率在93.5%。  相似文献   

10.
梅山铁尾矿强磁再选粗精矿深度还原试验   总被引:1,自引:0,他引:1  
杨龙  韩跃新  袁致涛  高鹏 《金属矿山》2012,41(7):148-150
由于梅山铁矿石中弱磁性铁矿物含量很高,导致梅山尾矿的铁品位较高。梅山铁矿选矿厂对该尾矿进行了强磁再选,获得了铁品位为31.80%的再选粗精矿。为获得合格的铁产品,东北大学对该再选粗精矿进行了深度还原工艺技术条件研究,结果表明,在还原温度为1 275 ℃,还原时间为60 min,料层厚度为30 mm,配碳系数为2.0,煤粉粒度为-2.0 mm情况下进行深度还原,金属化率为89.20%的还原物料经1段弱磁选可获得铁品位为80.05%、回收率为98.03%的弱磁选铁粉。  相似文献   

11.
中钢集团安徽天源科技股份有限公司,安徽 马鞍山 243000 四川某铁矿石属低硫磷高硅铝酸性弱磁性铁矿石,铁主要以赤铁矿的形式存在。为了给该赤铁矿石的开发利用提供依据,采用粗粒强磁干选-细粒高梯度强磁选-中矿再浮选工艺对其进行了选矿试验。结果表明:原矿破碎、筛分成40~15 mm和-15 mm两部分后,40~15 mm粒级经YCG-350×1000永磁辊式粗粒强磁选机干选,可获得产率为20.42%、铁品位为52.67%、铁回收率为22.47%的的合格块精矿;-15 mm粒级和干选尾矿磨至-0.074 mm占85%后经SLon高梯度强磁选机1次粗选、1次精选、1次扫选,可获得铁品位为60.35%、铁回收率为32.46%的高梯度强磁选铁精矿;高梯度强磁选中矿经脂肪酸类捕收剂NZ 1粗2精正浮选,又能获得铁品位为60.39%、铁回收率为13.11%的浮选铁精矿,从而使综合铁回收率达到68.04%。  相似文献   

12.
吴红  王小玉  刘军  张永 《金属矿山》2021,50(9):79-84
山西某微细粒铁矿石选矿厂原采用阶段磨矿—弱磁选—强磁选—阴离子反浮选工艺流程,生产中存在强磁选尾矿铁品位偏高、浮选指标不理想等问题。因此,通过一段强磁选磁场强度优化、弱磁选—强磁选替代絮凝脱泥等方法优化工艺流程。结果表明:①针对铁品位30.60%的试样,在磨矿细度为-0.076 mm占85%的条件下,采用一段弱磁选(143 kA/m)、强磁选(1 114 kA/m)工艺流程,可使强磁选尾矿铁品位降至6.18%,此时铁回收率损失仅为4.82%。②以二段弱磁选—强磁选流程替代原絮凝脱泥工艺,在二段磨矿细度为-0.038 mm占85%的条件下,二段弱磁选、强磁选磁场强度分别为143 kA/m、637 kA/m,浮选给矿铁品位由39.90%大幅提高至48.36%,浮选给矿中-10 μm粒级含量由27.22%降低至22.19%,-20 μm粒级含量由48.79%降低至44.21%。③对二段弱磁选+强磁选混合精矿采用“1粗1精3扫”闭路浮选流程,在1次粗选浮选浓度为25%、温度为30 ℃的条件下,依次添加NaOH 1 200 g/t、淀粉1 000 g/t、CaO 500 g/t,RA-915粗选、精选用量分别为900 g/t、150 g/t,最终可获得铁品位66.13%、铁回收率88.44%的浮选铁精矿,此时浮选尾矿铁品位为15.83%。优化后的试验流程降低了强磁选尾矿铁品位,同时提高了浮选给矿的铁品位,降低了浮选提质降杂难度,对同类型的铁矿石开发利用具有借鉴意义。 关键词 微细粒|铁矿石|高梯度强磁选|阴离子反浮选  相似文献   

13.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

14.
辽宁某钼尾矿粒度较粗,+0.074 mm占75.16%,铁品位为7.26%,铁主要以磁性铁形式存在,在0.074~0.038 mm粒级有一定的富集现象。对该尾矿进行了磁性铁矿物选矿回收试验。结果表明,试样采用一段弱磁选、一段中磁选、中磁选精矿再磨后二段弱磁选、两段弱磁选精矿合并后磁悬浮精选机精选,可获得铁品位59.12%、铁回收率为70.05%的铁精矿。  相似文献   

15.
朱显帮  黄新 《金属矿山》2012,41(3):66-69
选抛废粒度研究、阶段磨矿-阶段弱磁选和弱磁精反浮选脱硅试验研究。结果表明:湿式预选抛废可以显著提高入磨矿石品位、减少入磨量,采用2段磨矿、2段弱磁选不能获得铁品位和磷含量合格的铁精矿,弱磁精经1粗1精3扫反浮选脱磷,最终可获得铁品位为64.78%,铁回收率为68.01%,磷含量为0.139%的铁精矿。  相似文献   

16.
周咏  田艳红 《金属矿山》2019,48(5):188-191
研山铁矿综合尾矿铁品位为9.14%,磁性铁分布率为20.13%、赤褐铁分布率为55.91%,铁矿物主要富集在微细粒级,其次是粗粒级。为充分利用选矿厂闲置的原反浮选尾矿选铁系统回收综合尾矿中的铁矿物,进行了选矿试验。结果表明,试样经强磁选预富集-磨矿-弱磁选-1粗1精1扫反浮选流程处理,在高梯度强磁选背景磁感应强度为0.72 T,磨矿细度为-74 μm占90%,弱磁选磁场强度为238 kA/m,反浮选粗选pH调整剂NaOH用量为1 300 g/t(pH=11.5)、抑制剂苛化淀粉用量为840 g/t、活化剂CaO用量为687.5 g/t、捕收剂GK68用量为1 800 g/t,精选GK68用量为900 g/t情况下,可获得铁品位为69.84%、回收率为4.13%的优质铁精矿。改造后的生产实践表明,采用盘式磁选回收机预富集-一段闭路磨矿-浓缩磁选-二段闭路磨矿-弱磁选抛尾-1粗1精3扫闭路反浮选流程处理选矿厂综合尾矿,每年可产出铁品位超过69%的铁精粉约5.5万t,可为企业增加利润1 750万元/a。  相似文献   

17.
回收金岭铁矿尾矿中铁的试验研究   总被引:2,自引:2,他引:0  
张去非 《金属矿山》2008,38(10):149-152
针对山东金岭铁矿选矿厂尾矿中含有少量强磁性铁矿物的实际情况,研究了从尾矿中选铁的工艺方法。结果表明,在尾矿铁品位为3.70%的情况下,采用一粗一精弱磁选-磁选柱再选工艺流程,可获得精矿铁品位为45.87%,铁回收率为5.21%的分选指标。  相似文献   

18.
鞍钢东部尾矿样铁品位为10.64%,FeO含量为2.71%,铁主要以赤(褐)铁矿形式存在,磁铁矿少量,且这些铁矿物嵌布粒度较细,单体解离度较低,常规选矿工艺难以获得高品质的铁精矿。为解决该二次资源的开发利用问题,对有代表性试样进行了选矿试验研究。结果表明,采用筒式弱磁选—立环高梯度强磁选的初级预富集工艺处理,抛尾产率达49.48%,获得铁品位为16.24%、铁回收率为78.54%的初级预富集精矿;初级预富集精矿在磨矿细度为-0.043 mm占90%的情况下,采用筒式弱磁选—立环高梯度强磁选工艺处理,可获得铁品位为32.08%、铁回收率为62.68%的预富集精矿;采用弱磁选1—立环高梯度强磁选1初级预富集—初级预富集精矿细磨—弱磁选2—立环高梯度强磁选2再富集的阶段磨选流程处理试样,可获得铁品位32.08%、铁回收率62.68%的磁选预富集精矿,抛尾产率达79.21%,这有效降低了后续焙烧—磁选系统处理量,从而大幅度降低了后续生产成本,为二次铁矿石资源的高效利用提供了技术支持。  相似文献   

19.
华阳川铀多金属矿中有价金属品位均较低,通过选矿大幅度提高铀品位并综合回收伴生金属,方可使该矿床具备开发价值。针对矿石中伴生的铅和铁,开展了综合回收研究,先通过重选将各有价金属预富集在重选精矿中,然后采用铅硫混合浮选-铅硫分离的浮选工艺回收铅,通过添加铀矿物抑制剂、强磁脱铀等方式降低铅精矿中铀含量,最后采用弱磁选从选铅尾矿中回收铁,通过多次精选提高铁品位,降低铀含量。铅精矿中铅品位67.19%,铀品位0.004%;铁精中铁品位66.5%,铀品位0.004%,经检测铅精矿、铁精矿和重选尾矿中的放射性均达标,铅精矿和铁精矿可以直接出售,重选尾矿可以按照普通尾矿处置。  相似文献   

20.
为提高某贫赤铁矿尾矿以重选方法再选得到的铁品位为54.49%的粗精矿的质量,采用磁选、重选、浮选3种方法对该粗精矿进行了选别提质试验,确定了阶段磨矿-弱磁-强磁-反浮选工艺,试验最终获得了综合精矿铁品位为64.16%、精矿产率为75.04%、金属回收率为88.35%的较好选别指标,为该尾矿的资源化利用提供了可靠的技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号