首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
锂电池正极材料湿法回收过程中,因多金属浸出液的低浓度铜离子污染,造成有价金属回收工艺复杂以及二次废渣污染的共性问题。针对低浓度铜离子电沉积过程反应与传递受限造成的电沉积效率低问题,采用傅里叶显微红外光谱(FT-IR)、拉曼光谱(Raman)和紫外可见光谱(UV-VIS)等微结构检测方法研究了高强循环磁场对低浓度铜离子溶液电沉积的强化机制。结果表明,循环磁场可通过对水团簇与水合粒子结构形态的调控,提高扩散层离子传递速率与电沉积效率;在3h预磁化时间内,电解液磁感应强度由0增加到3T,DDAA(双质子双受体)型氢键结构破坏能力提高,0.01mol/L CuSO_4溶液与水黏度比(η/η0)由1.019 7降低到0.961 4,电沉积效率提升12.9%;在3T高磁感应强度下,预磁化时间由0到24h,0.01mol/L CuSO_4溶液与水黏度比(η/η0)由1.019 7降低到0.948 6,电沉积效率提升17.6%。电解质通过磁场磁化后,溶液中水分子与离子由于产生不同的感生磁场,溶液氢键数量减低,水合团簇减小,水合粒子半径降低,所以强化了扩散层传质过程,提高电沉积效率。  相似文献   

2.
罗凯  徐洁 《矿冶工程》2006,26(1):65-67
通过实验研究了影响离子交换膜电解脱铜效率的各种因素, 包括电流密度、极距、阳极室内硫酸起始浓度、电解温度、脱铜程度, 确定了离子交换膜电解脱铜的最佳工艺条件为: 极距20 mm, 阳极室内硫酸浓度10 g/L, 电解温度45 ℃, 当铜离子浓度大于5 g/L时, 采用大电流密度(220 A/m2)电解, 当铜离子浓度小于5 g/L时, 采用小电流密度(160 A/m2)电解。  相似文献   

3.
刚果(金)复杂铜钴合金两段浸出工艺研究   总被引:3,自引:2,他引:1  
采用一段直接酸浸出-二段氧化酸浸工艺从复杂铜钴合金中浸出钴、铜、铁,考察了浸出工艺条件对铜、钴、铁浸出率的影响。结果表明,一段最佳浸出工艺条件为:液固比10∶1,温度85 ℃,硫酸初始浓度1.8 mol/L,搅拌转速 300 r/min,浸出时间2 h;二段最佳浸出工艺条件为:液固比10∶1,温度90 ℃,硫酸初始浓度4.0 mol/L,搅拌转速350 r/min,氯酸钠用量20%,浸出时间6 h。在此条件下,钴、铜、铁的总浸出率达96.99%、99.56%和98.16%。  相似文献   

4.
以过硫酸铵为氧化剂, 氨为络合剂, 采用常温常压氧化氨浸工艺浸出铜镉渣中有价金属锌、镉和铜。对浸出过程工艺条件进行研究, 结果表明:在氨水浓度3.4 mol/L、铵离子浓度5.0 mol/L、(NH4)2S2O8浓度30 g/L、液固比5∶1、浸出时间60 min的条件下, 铜、镉的浸出率达到99%,同时锌的浸出率达到95%。  相似文献   

5.
采用硫酸铜电解液, 在高度阴极极化条件下, 利用阴极析出的氢气泡 “模板”电解沉积制备三维多孔铜。研究了电流密度、电沉积时间以及添加剂(Cl-、PEG)对多孔铜孔径、孔壁结构以及铜晶粒形貌的影响。结果表明, 在0.4 mol/L CuSO4、1 mol/L H2SO4组成的基础电解液中, 以纯铜作阳极、纯镍作阴极, 当电流密度为3 A/cm2时, 通电25 s可在阴极上制备出平均孔径为53 μm的多孔铜。向电解液中加入Cl-, 会使多孔铜结构变得致密和光滑, 但会使孔径过度增加; 加入PEG, 微孔结构变得比较规则, 孔径也明显减小, 但多孔铜结构不致密; 在120 mg/L Cl-和80 mg/L PEG的协同作用下, 可制得孔隙分布均匀、孔壁致密光滑的多孔铜。  相似文献   

6.
硫代硫酸盐从废弃印刷线路板中浸金实验研究   总被引:1,自引:0,他引:1  
硫代硫酸盐浸金的主要影响因素有: 浸取温度、反应时间、硫代硫酸盐浓度、二价铜离子浓度、氨浓度。合适的浸金条件是: 固液比为1∶5, 浸取温度60 ℃, 反应时间2 h, 硫代硫酸盐浓度0.4 mol/L, 二价铜离子浓度0.04 mol/L, 氨浓度0.45 mol/L, pH=9.5, 添加0.2%的SO32-, 空气进气速率1 L/min。研究表明, 硫代硫酸盐能够非常有效地从废弃印刷线路板中浸取金。  相似文献   

7.
采用方波伏安法和循环伏安法对硫代硫酸钠乙二胺铜浸金体系电化学行为进行分析,试验证明采用金电极可以得到金的溶出峰、铜和硫代硫酸钠的还原峰,探究了铜离子、乙二胺及添加剂对金的溶出的影响。研究结果表明:当铜的浓度为0.004 mol/L时,金的溶出峰最大;当乙二胺(en)浓度为0.06 mol/L时,金的溶出峰最大;适度的EDTA对铜离子有稳定作用,可提高金的溶出。  相似文献   

8.
电解精炼铜过程中,粗铜中的砷不可避免地溶解到电解液中,进而影响精炼铜效率。由于铜精炼电解液是酸性体系,常用的萃取法和化学沉淀法很难在该环境中取得理想效果。现有电解精炼厂大多选用电沉积法,以牺牲电耗的方式降低电解液中的砷浓度,然而这种方式能耗大、沉积效率低。通过模拟现有电沉积脱砷工艺,发现当铜电解精炼液中铜浓度降至10g/L时,砷才会较快沉积。结合现有铜电解精炼厂工艺特点对脱砷工艺进行改造,实现高效砷脱除,且产物以铜砷合金形式赋存,可以外售以平衡成本。改进后的工艺相较于现有工艺仅增设不同区段之间的电解液调节储存罐,通过平衡各区段中电解液铜离子浓度,实现砷的快速电沉积脱除。改进后的工艺不仅降低了砷脱除所需的电耗,同时减少了脱砷所需的时间,大大降低脱砷成本。此外,沉积脱砷后的产物中含铜可高达60%左右,是质量较高的粗铜,足以平衡脱砷过程的电耗,且可带来一定收益。  相似文献   

9.
针对兰坪燕子洞碳酸盐型含银氧化铜矿石高碱性、高砷、高结合率的特点,进行了常温常压氨浸试验研究。研究表明:常温常压,在氨水浓度1.5 mol/L,碳酸氢铵浓度1.5 mol/L,磨矿细度-0.074 mm占85%,液固比2.5∶1,浸出时间3 h条件下,铜浸出率可达70%。氨浸液经萃取-电积可得到99.95%的电积铜,有效地实现了铜元素的回收利用。  相似文献   

10.
采用三辛基甲基氯化铵(N263)-磷酸三丁酯(TBP)-正辛醇-磺化煤油协同萃取体系从金矿氰化废水中富集和回收有价金属,主要研究了N263与TBP的浓度、振荡时间、水相初始pH、相比(O/A)对铜氰络合离子萃取率的影响及协同萃取反应机制。研究表明,采用N263(20 vol.%)-TBP(15 vol.%)-正辛醇(10 vol.%)-磺化煤油体系在室温,O/A为1:1,pH值为10、混相时间为5min的条件下,废水中铜离子的单级萃取率可达到为98.9%,饱和萃取容量为19576 mg/L。饱和负载有机相经1 mol/L NaOH+5 mol/L NaSCN溶液反萃,在相比(O/A)为2:1的条件下,单级反萃液中Cu离子浓度可达到23000 mg/L,实现了废水中铜氰络合离子的有效富集。萃取过程中铜氰络合离子优先与TBP结合从而失去亲水性,随后再与N263阳离子发生离子缔合反应进入有机相。  相似文献   

11.
铁是湿法炼锌原料中含量较高且难脱除的杂质之一,硫酸锌电积液中的Fe^(2+)是电积工艺过程中重点关注的有害杂质之一。以含Fe^(2+)的硫酸锌模拟溶液为研究对象,开展锌电积的工艺试验,系统研究Fe^(2+)浓度、电流密度、极间距和电积时间对锌电积电流效率、电能消耗和电积锌形貌等的影响规律。结果表明,当电积液Fe^(2+)浓度在6 mg/L以上时,将会引起电流效率严重下降及吨锌电耗显著增加,并使阴极锌反溶;在电积液Fe^(2+)浓度为6 mg/L时,优化的工艺参数条件为:电流密度400 A/m^(2)、极间距4 cm、电积时间少于16 h,在此条件下,电流效率超过90%,吨锌电耗低于2950 kWh,同时阴极锌表面较为光滑平整。  相似文献   

12.
以某高砷金矿经两次粗选—两次精选—四次扫选选别得到的含金24.6g/t的金精矿为原料,采用响应曲面法对该金精矿硫代硫酸盐浸出过程进行优化分析,同时探索了S_2O_3~(2-)、NH_4~+和Cu~(2+)浓度等因素对浸出效果的影响。结果表明,浸出溶液中的S_2O_3~(2-)、NH_4~+和Cu~(2+)浓度对金浸出率的影响程度依次是[S_2O_3~(2-)]>[Cu~(2+)]>[NH_4~+]。在浸出时间4h、浸出温度40℃、矿浆pH值10、搅拌速度300r/min、硫代硫酸钠浓度0.5mol/L、硫酸铵浓度1.0mol/L、铜离子浓度为0.035mol/L条件下可获得最佳的浸出效果,最佳金浸出率为90.28%,可实现该高砷金精矿中金元素的有效回收。研究结果可为解决该类型浮选金精矿浸出方案和高砷金精矿硫代硫酸盐浸金工艺提供参考。  相似文献   

13.
以新疆滴水低品位氧化铜矿为研究对象, 在(NH4)2SO4-NH3浸出体系中分别考察了磨矿细度、浸出时间、总氨浓度、氧化剂用量、NH4+∶NH3比率等因素对铜浸出率的影响。最终确定最佳工艺条件为 磨矿细度-0.074 mm粒级占86%, 反应温度25 ℃, 搅拌转速200 r/min, 一段浸出液固比2∶1, 过硫酸铵0.15 mol/L, 氨水浓度3 mol/L, 硫酸铵浓度1.5 mol/L, 搅拌浸出1.5 h, 静置0.5 h;二段过硫酸铵、氨水和硫酸铵添加用量减半, 继续搅拌浸出1.5 h, 静置0.5 h;三段浸出药剂用量与二段浸出相同, 搅拌浸出2 h, 静置4 h完毕。该条件下, 可获得铜浸出率大于86%的优良指标。  相似文献   

14.
两段酸浸法浸出铜烟尘中的铜锌铟   总被引:1,自引:0,他引:1  
李学鹏  王娟  常军  王子阳 《矿冶工程》2020,40(1):109-113
以某铜烟尘为处理对象,采用常压酸浸回收铜锌、氧压酸浸回收铟的两段酸浸法浸出其中的铜、锌、铟。常压酸浸法浸出铜烟尘中锌和铜的最佳条件为:浸出温度95 ℃,硫酸浓度180 g/L,搅拌速率350 r/min,液固比4∶1,浸出时间120 min,此时铜、锌、铟浸出率分别为84.25%、95.35%和9.98%。采用氧压酸浸法浸出铜烟尘中的铟,最佳条件为:浸出温度220 ℃,搅拌速率650 r/min,釜内氧分压0.60 MPa,液固比4∶1,硫酸浓度180 g/L,浸出时间150 min,此时铜、锌、铟浸出率分别为93.12%、97.89%和99.50%。  相似文献   

15.
氨-硫酸铵体系中某铜矿尾矿氧化氨浸工艺研究   总被引:1,自引:0,他引:1  
以高碱性铜尾矿为研究对象, 在NH3·H2O-(NH4)2SO4体系中, 以过硫酸铵为氧化剂, 详细考察了浸出时间、反应温度、液固比、总氨浓度及NH3/NH4+比率、氨、硫酸铵和过硫酸铵浓度对铜浸出率的影响。实验结果表明, 尾矿铜的最佳浸出条件为:搅拌速度为500 r/min, 浸出温度为40 ℃, 氨浓度2.4 mol/L, 硫酸铵浓度1.0 mol/L, 过硫酸铵浓度0.2 mol/L, 液固比7∶1, 在此条件下铜的浸出率为75.9%。  相似文献   

16.
铜烟尘加压浸出工艺研究   总被引:4,自引:3,他引:1  
采用加压酸浸工艺处理铜烟尘, 研究了反应温度、反应时间、初始硫酸浓度、液固比、氧压等对铜、锌浸出率的影响。最佳浸出工艺条件为:初始酸度0.5 mol/L、液固比10∶1、反应温度115 ℃、反应时间2 h、搅拌转速500 r/min、氧压0.4 MPa, 此时Cu、Zn浸出率分别为95.4%和97.6%, Fe、As浸出率分别为6.6%和14.0%, 同时Pb、Ag等有价金属在浸出渣中得到富集, 实现了有价金属的综合回收。  相似文献   

17.
墨西哥某铜矿浮选-浸出-萃取-电积回收铜工艺研究   总被引:1,自引:1,他引:0  
墨西哥某矿为氧化铜矿物为主的混合矿,脉石主要为石英,矿石中还含有比较好浮的硫化铜矿物(黄铜矿),其酸浸效率不如氧化铜矿物,而且酸浸可能产生有害气体硫化氢。重点研究了浮选-浸出工艺,结果表明,采用硫化钠活化和丁黄药浮选,能获得铜品位为19.10%、铜回收率为35.02%的铜精矿;浮选尾矿直接用于后续浸出试验,H2SO4浓度为1 mol/L,液固比为3,室温(15 ℃)下搅拌浸出1 h,铜浸出率83.33%。以原矿为计算基准,铜浸出率为54.16%,若浮选精矿加浸出铜的总回收率则达到89.18%。  相似文献   

18.
为了有效回收废弃铜基镀锡电路板表面的锡金属, 试验采用H2SO4-CuSO4-Cl-体系进行退镀处理, 详细考察了铜离子质量浓度、初始硫酸浓度、温度、时间等因素对脱锡率的影响, 并进行了循环试验。试验结果表明, 在铜离子质量浓度0.4 g/L、液固比为57 mL/g、硫酸浓度50 g/L、氯离子浓度3.65 g/L、搅拌速度600 r/min、反应温度70℃、反应时间为12 min的条件下取得了较优的脱锡效果, 镀层锡的脱锡率达到98.54%, 锡进入溶液中转化成Sn2+、Sn4+, 退镀后液添加H2O2进一步氧化变成Sn4+, 溶液中的Sn4+大部分水解以β-锡酸沉淀形式分离, 获得干燥的β-锡酸产物, 含锡量高69.34%~69.89%;五次循环试验的脱锡率在98.5%左右, 检测结果表明Cu2+基本没有损失, 退镀液能够形成循环。该体系解决了置换过程中金属铜覆盖在表层从而影响脱锡效果的问题, 提高了脱锡效率, 可高效剥离镀锡层和基板; 该方法能够能循环利用退镀液, Cu2+置换脱锡后变为Cu+, 通过添加H2O2, 将退镀后液中的Cu+氧化为Cu2+后能再次脱锡。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号