首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
<正> 硝酸铵是黄铁矿、磁黄铁矿的活化剂。在红透山铜矿选矿厂选硫循环添加129克/吨硝酸铵,提高硫回收率2.15%,每年可增产硫精矿4226吨,效益30余万元。该厂的浮选工艺是:经过铜硫混合浮选、铜硫分离浮选,得到铜精矿和优质硫精矿;铜硫混选尾矿选锌得锌精矿;选锌尾矿再选硫得次硫精矿和最终尾矿。在上述浮选过程中,易选的硫矿物(大部分黄铁矿和部分磁黄铁矿)已在铜硫混选循环回收,进入锌尾选硫循环的硫矿物以难浮的磁黄铁矿为主,选硫作业回收率很低,平均为45%左右,小型试验也只能达到50%。为提高硫回收率,进行了添加硝酸铵的试验。  相似文献   

2.
磁黄铁矿与磁铁矿的浮选分离实践   总被引:5,自引:0,他引:5  
处理以磁黄铁矿和磁铁矿为主要回收对象的矿石,采用浮-磁工艺对磁黄铁矿强化浮选产出合格的硫精矿,浮选尾矿再磁选产出铁精矿。与之对比,先磁后浮分离效果不好。  相似文献   

3.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

4.
为了查明白云鄂博磁铁矿石选铁过程中硫的走向,以便进一步优化选别工艺,通过分析关键环节选别产物的化学成分和矿物组成,查明了硫的走向。岩矿鉴定表明:磁选时,黄铁矿只有少量进入铁精矿,大部分随脉石矿物(包括重晶石)进入尾矿;而磁黄铁矿主要进入铁精矿中,成为铁精矿硫高的主要原因;浮选脱硫工艺可以有效地脱出磁黄铁矿和黄铁矿,但要损失一部分磁铁矿。  相似文献   

5.
钒钛磁铁矿选铁尾矿中硫钴资源综合回收研究   总被引:1,自引:1,他引:0  
本文以工艺矿物学为基础,研究从攀西某钒钛磁铁矿选铁尾矿中回收硫钴资源的关键因素和工艺流程。研究结果表明,含钴黄铁矿、黄铁矿和磁黄铁矿的分离是实现选铁尾矿中硫钴资源综合回收的关键,强磁选是实现含钴黄铁矿分离的有效措施,采用浮选—精矿再磨再选—高场强阶段磁选工艺可以得到含钴0.40%、含硫50.45%的钴硫精矿,钴和硫回收率分别为6.74%和19.07%,同时得到含硫37.23%、硫回收率20.81%的硫精矿,实现选铁尾矿中硫、钴资源的综合回收。  相似文献   

6.
铜陵有色某矿山为解决铜(含金银)、铁回收后的选硫精矿品质问题,在小型条件试验基础上进行了连选选硫试验。结果表明:①磁选尾矿中金属矿物主要为黄铁矿、磁黄铁矿,黄铁矿、磁黄铁矿的解离度均在90%左右,粒度主要分布在10~60μm;脉石矿物主要是石英,其次为方解石、石榴子石等。②磁黄铁矿可浮性比黄铁矿差,且与易浮脉石矿物可浮性相近,是造成浮选工艺很难获得高品质的硫精矿的原因。根据黄铁矿与磁黄铁矿可浮性差异,以及磁黄铁矿和脉石矿物磁性的差异,采用分步浮选、中矿强磁选、强磁选精矿浮选工艺连选,获得了含硫40.36%、含铁49. 25%,全硫+铁品位为89.61%,硫回收率为66.78%的总硫精矿,该精矿经烧酸之后,硫酸烧渣铁品位可达65%,大大提高了硫酸烧渣的附加值。③产品镜下分析表明,磁选尾矿中主要有用矿物为黄铁矿和磁黄铁矿;硫精矿1中金属矿物以黄铁矿为主;精选1尾矿和精选2尾矿中金属矿物主要是磁黄铁矿;硫精矿2中金属矿物以磁黄铁矿为主。这表明分步浮选、中矿强磁选、强磁选精矿浮选工艺是回收磁选尾矿中黄铁矿和磁黄铁矿的合理工艺。④本次连选试验的尾矿2(即强磁选尾矿)含硫较高,达14.53%,以非磁性磁黄铁矿为主,后续应开展该部分含硫矿物的回收研究。  相似文献   

7.
新疆某铅锌银铁多金属矿石,含有磁黄铁矿2%,在铅锌银浮选尾矿综合回收磁铁矿的流程中,致使铁精矿硫含量超标。通过对铅锌浮选尾矿选铁除硫试验研究,确定除硫药剂制度为:组合活化剂硫酸368g/t Lc 20g/t,捕收剂丁黄药15g/t DH 5g/t,可以获得全铁品位67.97%,含硫0.19%的铁精矿,磁铁矿中铁回收率达87.64%的优良指标,且除硫药剂成本低廉。  相似文献   

8.
某选厂选铜尾矿磁选选铁工艺较简单,矿石中磁黄铁矿含量较高,导致所得铁精矿硫含量过高。在对其进行工艺矿物学研究的基础上,采用磁选—铁粗精矿再磨—磁选—浮选脱硫工艺流程进行试验,结果表明:最终可获得含铁68.73%,含硫0.82%,回收率为32.46%的铁精矿。提高了铁精矿品位,并降低了铁精矿中的硫含量。  相似文献   

9.
我厂处理的是接触变质带高中温热液交代矿床的矿石。主要有用矿物为黄铜矿、磁黄铁矿和磁铁矿。选矿原则流程为铜、硫依次优先浮选,硫尾矿选铁,铁精矿再脱硫。铜浮选尾矿的分析结果见表1。浮选铜时,加入石灰抑制硫化铁使其尾  相似文献   

10.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提高2.49和10.25个百分点,铜精矿中金品位和金回收率分别提高5.27 g/t和17.05个百分点,硫回收率提高1.78个百分点。实现了矿石中铜、金、硫、铁的高效综合回收。   相似文献   

11.
某细粒低品位铁矿石中磁铁矿与磁黄铁矿紧密共生, 为了在回收磁铁矿的同时, 综合回收伴生的磁黄铁矿资源, 针对矿石性质特点, 采用阶段磨矿-阶段弱磁选-一段磁选精矿浮选脱硫-二段磁选精矿反浮选提铁-反浮选尾矿再磨再选工艺流程, 使用磁黄铁矿高效活化剂CS和铁矿反浮选新型阳离子捕收剂YA, 获得了TFe品位70.05%、S含量0.16%、TFe回收率73.17%的高品位铁精矿和S品位25.86%、TFe含量50.10%、S回收率53.43%的硫精矿, 有效实现了磁铁矿与磁黄铁矿的综合回收。  相似文献   

12.
叶军建  张覃  周颖  姜毛  李先海 《金属矿山》2011,40(12):145-147
为分离某硫铁矿尾矿经弱磁选后所得精矿中主要以磁铁矿和磁黄铁矿形式存在的铁和硫,使该资源得到利用,对其进行了再选试验。试验结果表明,采用浮选-弱磁选-焙烧工艺可达到分离目的:原磁选精矿经浮选后,可获得硫品位为31.08%、硫回收率为82.91%的硫精矿;浮选尾矿经弱磁选和焙烧后,可获得铁品位为62.61%、硫含量为0.21%、SiO2含量为3.87%、对原磁选精矿铁回收率为31.03%的铁精矿。将所得硫精矿模拟制酸焙烧后对烧渣进行检测,烧渣铁品位为61.08%、硫含量为0.23%、SiO2含量为5.09%,可直接作为铁精矿利用。  相似文献   

13.
青海某矽卡岩型铁多金属矿含Cu 0.42%、S 5.30%、TFe 35.86%,是以蛇纹石、透辉石、绿泥石为主要脉石矿物的复杂难选铁多金属矿。主要矿石矿物磁铁矿、黄铜矿、黄铁矿、磁黄铁矿间嵌布关系密切,多呈港湾状分布并与脉石矿物包裹、接触,粒度粗细不均,20μm以下含量高,单体解离困难,较难得到合格的精矿产品。根据矿石性质,进行了多种流程试验,最终采用铜硫依次浮选-尾矿选铁流程进行选别,获得了铜精矿品位为16.51%,铜回收率为71.37%;硫精矿品位为29.03%,硫回收率为76.48%;铁精矿品位为63.19%,全铁回收率71.79%,铁精矿含硫0.73%的选矿指标。  相似文献   

14.
某含铜高硫磁铁矿石选矿试验   总被引:1,自引:0,他引:1  
唐雪峰 《金属矿山》2011,40(4):162-165
针对某磁铁矿石中含铜且磁黄铁矿含量高的特点,采用弱磁选-弱磁选精矿反浮选脱硫-弱磁选尾矿浮铜工艺进行选矿试验,获得了铁品位为66.85%,铁回收率为67.82%,硫含量仅0.20%的铁精矿和铜品位为23.40%,铜回收率为64.06%的铜精矿以及硫品位为23.05%的附加产品硫精矿,实现了铁、铜、硫的综合回收。草酸对磁黄铁矿的选择性活化作用和新型捕收剂CYS对磁黄铁矿的强捕收能力是磁铁矿与磁黄铁矿得以高效分离的关键。  相似文献   

15.
对江西某难选铜钼硫多金属矿进行了浮选试验研究.采用铜钼等可浮?强化选铜?尾矿选硫的工艺流程,可获得铜钼混合精矿铜品位18.27%、钼品位0.45%,铜回收率81.03%、钼回收率59.83%,以及硫精矿品位47.32%、硫回收率85.58%的选别指标,实现了铜钼硫的综合回收.  相似文献   

16.
澳大利亚某含硫铁铜矿的选矿工艺研究   总被引:2,自引:0,他引:2  
针对澳大利亚某含硫铁铜矿样, 采用先浮选硫化矿物、后磁选铁矿物的原则工艺, 可在有效降低铁精矿中硫含量的同时综合回收矿石中的铜、硫。在原矿磨至-0.074 mm粒级占70%后铜硫混选, 粗精矿再磨至-0.074 mm粒级占95%后铜硫分离, 铜硫混选尾矿再弱磁选的闭路试验中, 可以获得铜精矿品位19.93%、铜回收率80.35%, 硫精矿品位32.75%、硫回收率41.13%, 铁精矿铁品位71.45%、铁回收率89.44%(铁精矿含硫0.34%)。  相似文献   

17.
大宝山难选铜硫矿石选矿新工艺研究   总被引:2,自引:0,他引:2  
广东大宝山铜硫矿石铜品位低,主要金属矿物黄铜矿与黄铁矿、磁黄铁矿等嵌布关系复杂,磁黄铁矿可浮性与黄铜矿相近,采用单一浮选工艺处理该矿石难以获得较好的铜硫分离指标。为探索该难选铜硫矿石铜硫高效分选工艺,在对其进行工艺矿物学分析基础上进行了选矿新工艺研究。结果表明:原矿磨细至-0.074 mm占80.10%,经1粗3扫铜浮选,粗选精矿再磨至-0.074 mm占90%经磁选脱除磁黄铁矿,非磁性产品经3次铜精选,可以获得铜品位为18.57%、回收率为80.26%的合格铜精矿,浮铜扫选尾矿经1粗1扫硫浮选,与磁性产品合并后可以获得硫品位为45.35%、回收率为87.12%的硫精矿,铜硫得到有效分离。  相似文献   

18.
云南某选铜尾矿提铁降硫试验研究   总被引:1,自引:0,他引:1  
杨晓峰  马颖 《矿冶》2011,20(4):42-46
某地选铜尾矿中有用矿物为磁铁矿,硫化矿物主要为磁黄铁矿,部分黄铁矿及少量黄铜矿。在较佳的分选条件下,经"浮选—磁选"联合工艺流程选别后,可获得两种产品:其一是铁精矿产品,产率13.94%、铁品位69.05%、含硫0.64%、对磁性铁回收率96.89%;其二是硫精矿产品,产率34.07%、硫品位31.86%、硫回收率93.41%。脱硫率高达99.23%,实现了铁硫的高效分离,矿产资源得到了综合回收利用。  相似文献   

19.
安徽某含铜铁矿石为典型的多金属伴生矿,矿物间共生密切,嵌布关系复杂。矿石中金属矿物主要为磁铁矿,少量黄铁矿、黄铜矿及磁黄铁矿等;非金属矿物主要为蛇纹石、透辉石及透闪石等。为综合回 收矿石中的有价组分,在条件试验的基础上,采用铜硫混合浮选—铜硫分离—混浮尾矿磁选的工艺流程处理该矿石,全流程试验最终可获得Cu品位22.18%、Cu回收率76.85%的铜精矿,S品位43.29%、S回收率45.71%、 Co品位0.43%、Co回收率45.04%的硫精矿,及Fe品位62.36%、Fe回收率93.09%、含S 0.18%的铁精矿。试验指标良好,伴生组分Co在硫精矿中有效富集,实现了有价金属的综合回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号