首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
采用热/力模拟实验方法对热轧态00Cr22Ni5Mo3N双相不锈钢(DSS)进行低应变高温平面变形试验.结果表明,在应变速率分别为0.1s-1和2s-1,变形温度900 ~ 1200℃条件下,双相不锈钢的峰值变形抗力随变形温度升高而降低,随应变速率的增大而增加,在各变形温度下,其差值达到30~80MPa.在1000 ~ 1200℃变形温度区间,铁素体组织发生完全的动态回复以及再结晶软化,部分奥氏体主要通过孪生变形及亚晶的形成进行软化.  相似文献   

2.
在Gleeble-1500热模拟机上对Ti-6Al-2Zr-1Mo-1V钛合金铸态材料进行了恒温和恒应变速率下的热压缩变形试验.在试验温度700~1000℃、应变速率5×10-3~50 s-1条件下,测试了材料的稳态变形抗力,并绘制成lnσ-lnε和lnσ-1/T关系曲线,从而确定合金的变形激活能Q和应力指数n.观察热变形后的组织表明:合金在800C热变形为不完全动态再结晶组织,变形机制受动态回复与动态再结晶共同影响;900 C为完全动态再结晶组织,变形机制完全受动态再结晶影响.合金在900 C以上具有较好的工艺塑性,并且应力指数n随变形温度的升高而减小.  相似文献   

3.
Ti—6Al—2Zr—1Mo—1V合金的热压变形特性及塑性流动方程   总被引:6,自引:0,他引:6  
在 Gleeble- 15 0 0热模拟机上对 Ti- 6 Al- 2 Zr- 1Mo- 1V钛合金铸态材料进行了恒温和恒应变速率下的热压缩变形试验 .在试验温度 70 0~ 10 0 0℃、应变速率 5× 10 -3~ 5 0 s-1条件下 ,测试了材料的稳态变形抗力 ,并绘制成 lnσ- lnε和 lnσ- 1/ T关系曲线 ,从而确定合金的变形激活能 Q和应力指数 n.观察热变形后的组织表明 :合金在 80 0℃热变形为不完全动态再结晶组织 ,变形机制受动态回复与动态再结晶共同影响 ;90 0℃为完全动态再结晶组织 ,变形机制完全受动态再结晶影响 .合金在 90 0℃以上具有较好的工艺塑性 ,并且应力指数 n随变形温度的升高而减小 .  相似文献   

4.
利用Gleeble热模拟机研究了铸态Ti-44Al-4Nb-(Mo,Cr,B)合金在1 050~1 200℃、0.005~0.5s-1下的热变形行为,并基于所得的真应力-真应变曲线绘制了热加工图。另外,通过透射电子显微镜(TEM)研究了片层和γ相的变形机制。结果表明,该合金是典型的应变速率和温度敏感材料,它的热加工性能较好,在1 100、1 150℃温度下的低应变速率区域以及1 200℃温度下高应变速率区域比较适合热加工。再结晶是流变软化的主要原因,较高的变形温度和较低应变速率有利于再结晶晶粒的进行。片层结构的变形机制为片层扭折,而γ相的主要变形机制为位错滑移和变形孪晶。  相似文献   

5.
利用等通道转角挤压(ECAP)技术在200~300℃温度下对纯镁进行挤压,使用光学显微镜(OM)和透射电子显微镜(TEM)表征分析不同温度下挤压后纯镁的组织特征以及相同温度下不同区域的组织特征。结果表明,挤压后材料的晶粒尺寸由应变速率和温度决定,经200℃挤压后晶粒最细,平均晶粒尺寸约25.6μm。经225℃挤压1/2道次后,剪切变形前组织主要为长条状粗大晶粒,粗晶中伴有孪晶产生;剪切区的组织主要为剪切变形带和大量的细晶围绕在粗晶周围;剪切变形后组织主要为再结晶组织和少量长条状粗晶。纯镁在225℃挤压后晶粒内部存在较多的基面位错,同时也存在〈c+a〉非基面位错。低温ECAP挤压时,再结晶方式为非连续动态再结晶和孪晶动态再结晶共同作用,高温变形时以非连续动态再结晶为主。  相似文献   

6.
徐清波  陶友瑞  米芳 《矿冶工程》2013,33(5):124-126
采用动态热模拟技术进行高温压缩变形试验, 分析了5083铝合金的流变行为, 建立了该材料的高温流变应力模型。结果表明: 应变速率和变形温度显著影响5083铝合金流变应力, 流变应力随变形温度升高而降低, 随应变速率提高而增大, 在高应变速率下出现明显的动态软化。  相似文献   

7.
变形条件对2091铝锂合金高温变形组织的影响   总被引:1,自引:0,他引:1  
沈健  尹志民 《矿冶工程》1996,16(4):57-61
利用圆柱样品轴对称等温压缩实验研究了2091Al-Li合金高温塑性变形组织特征,分析了合金在变形过程中的组织变化规律。试验应变速率和温度范围分别为10^-3 ̄10.0s^-1和300 ̄500℃。结果表明,2091合金在高温塑性变形时主要形成亚晶组织。随变形温度升高和应变速率降低,亚晶尺寸增大,亚晶界处的位错排列更为简单的完整。变形时的软化机制主要为动态回复,动态再结晶只有较高的温度和较低的应变速率  相似文献   

8.
以各合金元素粉末为原料,通过混料、冷等静压及真空烧结制备了新型医用Ti-14Mo-2. 1Ta-0. 9Nb-7Zr合金。通过改变压制压力、烧结保温时间等工艺参数制备合金,然后在变形量为60%、变形温度为900℃、变形速率为0. 01 s-1的条件下对合金进行高温热变形处理。利用X射线衍射(XRD)、光学显微镜(OM)及真应力-真应变曲线,表征分析了粉末冶金制备工艺参数对合金热变形行为的影响。结果表明,合金热变形后组织沿变形方向成纤维状,形成流线;粉末冶金法制备的合金强塑性好,且保温时间越长、制备压力越大,合金强塑性越好;合金在高温变形的条件下,发生动态回复和动态再结晶。动态回复阶段流变应力随着应变量的增加而增加,动态再结晶阶段则相反,再结晶完成后,合金进入稳态流变阶段。  相似文献   

9.
热压缩2519 铝合金流变应力特征   总被引:11,自引:0,他引:11  
采用Gleeble-1500 热模拟机进行高温等温压缩试验, 研究了2519 铝合金在高温塑性变形时的流变应力特征。试验温度为300~500 ℃、应变速率为0.05~25 s-1 。实验结果表明:2519 铝合金真应力-应变曲线在低应变速率(﹒ε≤25 s-1)条件下, 流变应力开始随应变增加而增大, 达到峰值后趋于平稳, 表现出动态回复特征;而在高应变速率(﹒ε≥25 s-1)条件下, 应力出现锯齿波动达到峰值后逐渐下降, 表现出不连续再结晶特征;应变速率和流变应力之间满足双曲正弦关系, 温度和流变应力之间满足Arrhenius 关系;可用包含Arrhenius 项的Zener-Hollomon 参数来描述2519 铝合金高温压缩变形时的流变应力行为。  相似文献   

10.
合金在高温下的流变应力与组织演变特征是构建合金热加工参数的重要基础。基于此,利用Gleeble 1500D对AZ31连铸板在温度为450和500℃、应变速率为0.15 s^(-1)的压缩行为进行了研究,并将其与400℃及以下温度的压缩变形行为进行了对比。结果发现:随着温度的升高,合金的稳态流变应力值下降,在500℃进行35%变形时仅约28.2 MPa;在较低温度时,合金流变应力取向差异(0°试样<5°试样<10°试样)随温度升高而消失;不同于稳态流变应力的变化,再结晶比例则随变形温度的升高而增大,变形量与再结晶比例之间保持正相关,而取样角度使得再结晶比例的取向性较强,500℃时再结晶比例在不同取样方向上遵循0°试样<5°试样<10°试样的变化趋势;随着变形量的进行,动态再结晶越来越充分,其组织形貌逐渐由晶界处的零散分布再结晶晶粒向“项链状”再结晶分布转变,并且逐渐呈包围状态向晶体内部扩展,最后完全取代原始连铸板组织。此外,通过示意图的方式再现了合金再结晶的形核与长大过程。  相似文献   

11.
采用热压缩变形的方法对锻态LZ61镁锂合金的热变形行为进行研究,分析了应变速率对其热变形行为的影响及其微观组织演变规律。结果表明,合金的流变曲线呈现动态再结晶特征,流变应力随应变速率降低而减少; 研究范围内合金的应变速率敏感指数为0.283,接近准超塑性。锻态合金组织由α-Mg相基体及其晶界上的弥散分布的β-Li相组成,经热压缩后,显微组织的变化证明了动态回复和动态再结晶的发生; 热压缩过程中该合金的主要塑性变形机制为晶界滑移。  相似文献   

12.
6061铝合金高应变速率本构参数研究   总被引:4,自引:0,他引:4  
通过冲击拉伸试验, 研究了6061铝合金在自然时效态和人工时效态, 在应变速率为0.001~1 500 s-1条件下的动态拉伸力学行为。采用Johnson-Cook本构模型可以更真实地描述冲击载荷条件下6061铝合金的动态力学行为。结合试验数据, 获得了自然时效态和人工时效态6061铝合金的本构关系参数。研究表明, Johnson-Cook本构模型适用于描述金属材料从低应变率到高应变率下的动态行为, 同样也可用于准静态变形的分析。  相似文献   

13.
以固溶+自然时效态7A55铝合金为研究对象,利用热模拟试验机研究该合金在近生产条件(温度370~450℃,应变速率0.01~10 s^-1)下的流变应力行为。基于得到的流变应力数据,构建了本构方程和热加工图,并通过微观组织对热加工图进行了验证。结果表明,经自然时效预处理后的7A55铝合金在高温变形时呈现明显软化现象,流变应力随温度的增加和应变速率的降低而逐渐下降。通过计算得到热激活能为138.71 kJ/mol,最佳热变形参数为410~450℃、0.01~0.1 s^-1。7A55铝合金在热变形时存在亚动态再结晶现象。  相似文献   

14.
Mg-8Gd-3Y-0.5Zr耐热镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
对Mg-8Gd-3Y-0.5Zr(质量分数, %)稀土镁合金在温度为250~450 ℃、应变速率为0.001~0.1 s-1、最大变形程度为50%的条件下, 进行了恒应变速率高温压缩模拟实验研究, 分析了实验合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化, 计算了塑性变形表观激活能及相应的应力指数, 结果表明: 合金的稳态流变应力随应变速率的增大而增大, 在恒应变速率条件下, 合金的真应力水平随温度的升高而降低; 在给定的变形条件下, 计算得出的塑性变形表观激活能和应力指数分别为220 kJ/mol和5.6。根据实验分析, 合金的热加工宜在350 ℃左右进行。  相似文献   

15.
利用热-力模拟试验机对高铌和低铌X80管线钢的动态再结晶行为进行了研究,结果表明:与低铌X80管线钢相比,高铌X80管线钢需在较高的变形温度和较低的应变速率下才能发生动态再结晶.高铌和低铌X80钢的动态再结晶激活能分别为342.95,306.02 kJ/mol,动态再结晶模型分别为z=4.091σ5.992p,z=0....  相似文献   

16.
采用金相观察、扫描电子显微镜、能谱分析、显微硬度计及分离式霍普金森压杆等手段,研究了峰值时效挤压态Mg-8Gd-3Y-0.5Nd-0.5Zr合金在变形温度及应变速率下的动态冲击力学变形行为。结果表明:合金在220℃/14h到达峰值时效,其硬度约为143.2Hv,提升了55%左右。在不同的变形温度下均表现出优异的抗冲击性能,在室温及应变速率为3000 s-1条件下合金抗压强度可高达682MPa;在100℃及应变速率为1500 s-1条件下抗压强度为635MPa;在400℃及应变速率为3000 s-1条件下抗压强度为583MPa。合金在不同温度下优异的抗冲击性能主要得益于时效强化相、稳定存在的块状富稀土粒子以及冲击过程中在晶界形成的动态析出相协同强化机制。随着应变速率和变形温度的增大,合金热软化效应增强,合金力学性能有所降低。  相似文献   

17.
张国栋 《矿冶工程》2018,38(6):143-146
采用多向压缩技术成功制备了最终晶粒尺寸为2 μm的超细晶纯铝。对不同应变量下材料的微观结构表征发现,变形过程中的晶粒细化机制主要是变形带细化和位错分割细化; 由于变形导致材料温度升高,材料的晶粒细化也与再结晶有关系。硬度测试表明,随着应变量增加,材料硬度先增加后减小,等效应变为1.4时,材料硬度达到了最大值46.3HV。材料硬度的升高主要与位错增殖及缠结有关,硬度值的降低与位错密度降低、压缩过程中材料的动态回复有关。  相似文献   

18.
煤岩冲击变形破坏特性及其本构模型   总被引:1,自引:0,他引:1       下载免费PDF全文
采用分离式霍普金森压杆(SHPB)实验系统对不同冲击速度下煤岩试样应变率变化规律、动态力学特性及其变形破坏特征进行了测试,探讨了煤岩动态力学本构模型。实验结果表明,煤岩试样的加载应变率与冲击速度整体上呈正相关关系,且不同冲击速度下煤岩试样的力学响应特征均具有分段性,可根据响应特征的差异将煤(岩)试样在低-中-高冲击速度下的变形依次划分为压密变形、塑性变形、塑性软化(硬化)变形3种类型;煤岩试样的破坏特征均具有明显的应变率相关性,在低冲击速度下,试样均呈脆性破坏形式,随着冲击速度的增加,试样的延性破坏特征逐渐显现。在分析煤岩试样应力-应变本构关系及动态破坏特征的基础上建立了包含低-中-高应变率响应的粘弹性损伤本构模型,应用结果表明,与实测曲线相比模型拟合曲线拟合精度高,验证了所建模型的有效性与合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号