首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
对印尼某磁铁矿-赤铁矿混合矿石进行了选矿试验研究。磨矿弱磁选试验结果表明,磨矿细度控制在-74μm70.67%、磁场强度159.2 kA/m,弱磁选精矿品位65.46%、回收率52.70%。采用弱磁-强磁流程,综合铁精矿的产率68.32%、品位61.61%、回收率79.04%;采用弱磁-摇床流程,综合铁精矿的产率59.63%、品位63.65%、回收率71.27%。  相似文献   

2.
安徽某磁铁矿矿石结晶粒度细,以磁铁矿为主,现场采用1次湿式粗粒预选—2段闭路磨矿—1次弱磁选后粗精矿再磨—3次弱磁选的阶段磨选流程,仅能获得铁品位为63.04%的精矿。为了提高最终铁精矿品位,采用TM200-1.5型塔磨机替代球磨机对现有工艺中再磨再选工序进行了优化流程试验研究。试验结果表明:通过使用塔磨机能达到-45μm 95%以上的矿石细度,配合2段磁选工艺流程,可获得全铁品位为65.60%、回收率为90.08%,磁性铁品位为65.14%、回收率为93.04%的合格精矿;使用塔磨机流程具有更加简洁、生产成本低的特点,同时精矿品质更高。  相似文献   

3.
某含铟锌铁多金属矿的选矿试验研究   总被引:1,自引:0,他引:1  
为了综合回收利用某锌铁矿中的锌、铁、银、铟,采用"浮选—磁选"联合工艺流程对该矿石进行选别。在磨矿细度-74μm 70%的条件下,获得Zn品位50.71%、Zn回收率90.12%的锌精矿和TFe品位65.24%、TFe回收率86.35%,m Fe品位64.07%、m Fe回收率95.98%的铁精矿。银和铟在锌精矿中富集,Ag回收率76.56%、In回收率77.50%。选矿试验取得较理想分选效果。  相似文献   

4.
思茅某氧化铜矿选别试验研究   总被引:3,自引:1,他引:2  
针对某氧化铜矿石采用一段磨矿,磨矿细度为-74μm占70%.利用硫化浮选法回收铜,丁基黄药作捕收剂,松醇油作起泡剂,采用一次粗选、两次扫选的开路流程可以获得比较满意的指标:原矿铜品位Z83%,混合精矿铜品位14.54%,混合精矿铜回收率69.17%。  相似文献   

5.
针对某地超贫磁铁矿石,对破碎后样品进行了干式预选试验和适宜磨矿细度条件下预选试验精矿的三段湿式磁选试验。确定了干式预选试验的适宜预选粒度为-3 mm,在皮带转速80 r/min,磁场强度318.4k A/m条件下,所得预选精矿的TFe品位为19.98%,回收率为50.64%,抛尾率为80.03%,降低了后续湿式磁选前的磨矿成本。湿式磁选试验最终可以获得精矿TFe品位67.15%,作业回收率78.20%,尾矿TFe品位5.66%的良好指标。  相似文献   

6.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

7.
针对赞比亚谦比西铜矿西矿体矿石特点,原矿含铜1.855%,氧化率5.35%,主要硫化矿为黄铜矿,原矿低品位废石占25.32%左右,氧化率高、含泥量大,原矿中-38.5μm含量高达36.69%,属易碎难磨矿石。磨矿工艺试验研究表明,一段磨矿最优条件为-74μm占85.25%;两段磨矿最优条件为,第一段磨矿细度为-74μm占72.73%,第二段磨矿后总产品细度为-74μm占98.60%。浮选试验结果表明,对于该矿石,两段磨矿工艺明显优于一段磨矿工艺,铜回收率至少提高3个百分点。  相似文献   

8.
对河北某铁品位29.62%的铁矿石,采用二阶段磨矿—阶段弱磁选流程,在一段磨矿细度为-0.074 mm占55%,二段磨矿细度为-0.074 mm占85%条件下,可以获得精矿铁品位68.63%、回收率72.81%的指标。  相似文献   

9.
低品位硅质石煤钒矿的选矿试验研究   总被引:1,自引:0,他引:1  
针对陕西某地低品位石煤钒矿,在工艺矿物学研究的基础上,采用沉降—磁选的工艺技术方案,对沉降和磁选过程进行了工艺技术条件的研究。结果表明:在磨矿细度为-74μm占35.78%,分散剂YZA用量为2.0 kg/t,沉降浓度为35%,沉降时间为5 min的条件下,沉降效果最佳;在一段沉降脱泥的基础上进行二段脱泥流程,可以提高钒的回收率;在磁场强度为1.4 T时,磁选效果最优。通过沉降—磁选联合选别流程,可抛掉V_2O_5品位为0.15%、回收率为16.57%的尾矿,最终获得V_2O_5品位为2.10%、回收率为83.43%的钒精矿。  相似文献   

10.
通过对某地磁铁矿原矿研究表明,该矿属细粒极难磨矿石。原矿经干式磁选抛弃废石后,品位由原来的26.96%提高到29.61%。然后采用两段磨矿、三段磁选流程进行处理。第一、二段磨矿细度分别为0.074mm占40.80%和83.50%,磁选精矿品位为65.87%,回收率为82.16%,选矿比为2.92。最后将磁选精矿用磁选柱进行一段精选,最终精矿品位上升到67.53%。  相似文献   

11.
青海上庄磷矿石主要组成矿物为透辉石、黑云母、(氟)磷灰石和磁铁矿,还有少量的长石、榍石和方解石。矿石P2O5、TFe和K2O品位分别为3.52%、9.08%和3.77%。黑云母主要呈不规则片状或片状分布,结晶粒度较粗,磷灰石多分布在透辉石、黑云母和磁铁矿的粒间,一般在0.3~1.5 mm,易于单体解离。透辉石和黑云母的矿物结晶粒度较粗,但是在矿石中相互包裹现象比较普遍。为给该矿石的开发利用提供参考,进行了实验室选矿流程试验。结果表明:采用棒磨粗磨(-0.35 mm占78.22%)分级(d=0.35 mm)、粗粒级摇床重选黑云母、细粒级棒磨再磨(-74 μm占50.90%)1粗2精1扫浮选磷灰石、浮选尾矿3段磁选磁铁矿(一段磁选精矿磨细至-74 μm占94.00%)、磁选尾矿分级(d=45 μm)脱泥后浮选分离透辉石和细云母的联合流程,获得了P2O5品位为32.01%、P2O5回收率为92.85%的磷精矿,K2O品位为9.58%、K2O回收率为20.80%的粗云母精矿和K2O品位为8.38%、K2O回收率为37.38%的细云母精矿,云母总回收率为58.18%;此外,还可获得TFe品位为64.35%、回收率为33.62%的铁精矿。实验室试验获得了满意的选矿指标,试验在保证磷灰石和磁铁矿回收率的情况下,综合回收了云母和透辉石矿物,实现了矿石的综合回收。  相似文献   

12.
胡洋  张梦雨  陈飞  刘佳毅 《现代矿业》2019,35(8):116-119
试验用极贫铁矿石铁品位为13.90%,有害元素磷含量为0.86%,磁性铁占总铁的46.04%,主要以磁赤铁矿、磁铁矿形式存在,磁赤铁矿、磁铁矿以半自形变晶结构为主,嵌布粒度大于0.1 mm的超过75%,约有5%的磁赤铁矿的嵌布粒度小于0.05 mm。为确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,矿石采用3阶段磨选流程处理,在一段磨矿细度为-0.076 mm占38.5%、弱磁选磁场强度为115 kA/m,二段磨矿细度为-0.076 mm占74%、弱磁选磁场强度为115 kA/m,三段磨矿细度为-0.043 mm占92%、弱磁选磁场强度为115 kA/m的情况下,获得了铁品位为60.12%、铁回收率为40.22%的铁精矿,铁精矿硫、磷含量均较低,满足产品质量要求。  相似文献   

13.
刘文胜  韩跃新  姚强  高鹏  刘杰 《金属矿山》2022,51(2):139-145
为解决鞍千矿业有限责任公司现行阶段磨矿—粗细分级—重磁浮联合分选工艺中重选精矿品位低、波 动大,浮选尾矿品位高、选别工艺流程长等难题,以鞍千现场半自磨粗粒湿式强磁预选精矿为研究对象,开展搅拌磨 矿—弱磁—强磁—反浮选短流程工艺优化试验研究,以期实现鞍千铁矿石的高效开发与利用。 结果表明,鞍千现场 半自磨—粗粒湿式强磁预选精矿在搅拌磨磨矿细度-0. 038 mm 占 80%条件下,经磁场强度 79. 58 kA / m 弱磁选,弱磁 尾矿经背景磁感应强度 700 mT 强磁选,强磁精矿以淀粉为抑制剂、CaO 为调整剂、TD-Ⅱ为捕收剂经 1 粗 1 精 3 扫反 浮选,反浮选精矿与弱磁选精矿合并为综合精矿,综合精矿铁品位为 68. 04%、回收率为 91. 78%,综合尾矿铁品位 8. 62%。 搅拌磨矿—弱磁—强磁—反浮选短流程充分利用铁矿磁性差异进行分选,实现了鞍千铁矿石的分质分选和 脉石的梯级抛除,对于鞍山式赤铁矿石经济高效开发利用具有重要的指导意义。  相似文献   

14.
甘肃某微细粒嵌布的贫磁铁矿石因最终磨矿产品粒度极细,常规弱磁选指标较差。为改善选别效果、提高分选指标,对弱磁精选前的分散—选择性絮凝条件进行了研究,并借助激光粒度分析仪对分散—絮凝效果进行了测定。结果表明:矿石在磨矿1细度为-74μm占90.43%、磨矿2细度为-30μm占93.45%、弱磁精选1分散剂六偏磷酸钠用量为500 g/t,絮凝剂CMS用量为750 g/t,矿浆p H=11情况下,采用磨矿1—弱磁粗选—磨矿2—2次弱磁精选流程处理,最终获得铁品位为62.82%、铁回收率为79.12%的铁精矿,该精矿比常规弱磁精矿铁品位和铁回收率分别提高了1.28和5.08个百分点。分散—絮凝机理分析表明:在分散状态下,磁铁矿表面电荷负值较石英小,阴离子型絮凝剂CMS可通过氢键作用选择性吸附磁铁矿颗粒,显著增大磁铁矿微细颗粒的粒径,从而改善磁选效果、提高选矿指标。  相似文献   

15.
对鄂西隐晶质鲕状赤铁矿进行磁化焙烧—阶段磨矿—磁选试验,得到TFe 57.73%、磷含量0.70%,铁回收率为90.41%的人工磁铁矿粗精矿。为继续提升精矿质量,对人工磁铁矿粗精矿进行细磨,磨矿细度-22μm含量80%时,单体解离度为84.63%。采用选择性絮凝—磁种法对细磨粗精矿磁选,进行了流程优化试验,得到了TFe 60.87%、磷品位0.41%的铁精矿,综合铁回收率提高了9.55%。机理分析表明,人工磁铁矿的磁性明显弱于天然磁铁矿,且随粒度减小,两者磁性差异进一步增大。在磁场强度70kA/m条件下,用作磁种的天然磁铁矿的比磁化系数是人工磁铁矿的2.4倍。在添加絮凝剂CMS后,FTIR分析表明絮凝剂CMS在磁铁矿表面产生了选择性吸附,使细磨粗精矿平均粒径或人工磁铁矿平均粒径均大幅度增大,而石英平均粒径增幅很小,从而增强了脉石与磁铁矿的分离效果,提高了铁的回收率。  相似文献   

16.
袁家村难选闪石型磁铁矿具有铁硅酸盐含量高、矿物组成复杂、矿物嵌布粒度极细的特点。在工艺矿物学研究的基础上,通过预选(早丢)和弱磁精矿反浮选或淘洗磁选在相对粗粒条件下获得大部分高品位铁精矿,达到降低磨矿成本的目的。最终得出了适合袁家村闪石型磁铁矿石的选矿工艺流程,采用-3 mm湿式预选-两段阶磨-四次弱磁选-反浮选-浮尾再磨弱磁选流程,可获得精矿产率29.42%、铁品位68.16%、回收率66.55%的指标。该工艺解决了袁家村闪石型磁铁矿经济开发利用的难题。   相似文献   

17.
根据某高磷鲕状赤铁矿磨矿分级产品中铁在各粒级中的分布差异, 采用粗细分级-磁选工艺, 分别进行弱磁-强磁选, 获得了TFe品位为46.8%、TFe回收率为82%的磁选粗精矿。对粗精矿再磨进行一粗两精反浮选, 获得精矿TFe品位为54.5%, TFe回收率为68.3%。  相似文献   

18.
鞍千贫赤铁矿石铁品位为16.67%,铁主要以赤铁矿的形式存在,铁在赤铁矿中分布率为72.77%,主要脉石矿物为石英。为了开发利用该低品位铁矿石,进行了预富集试验。结果表明:采用湿式强磁预选-磨矿-弱磁选-强磁选工艺预富集,矿石在给料粒度-3 mm、背景磁感应强度为0.8 T、立环转速2.0 r/min、冲次频率200次/min条件下强磁预选,预选精矿在磨矿细度-200目占95%,磁场强度为120 kA/m条件下弱磁选,背景磁感应强度为0.8 T条件下强磁选,可获得TFe品位47.04%、回收率为80.25%的预富集精矿。试验结果可以为我国贫赤铁矿石的强磁预选提供参考。  相似文献   

19.
为了回收白云鄂博铁矿选铁尾矿中的铁矿物,采用强磁预富集-悬浮磁化焙烧-磁选工艺进行铁矿物再选试验。结果表明:TFe品位为14.10%的白云鄂博铁矿选铁尾矿经磁选预富集所得精矿在总气量600 mL/min、CO浓度15%、焙烧温度800 ℃、焙烧时间5 min条件下焙烧后,焙烧产品磨细至d90=39.29 μm,在磁选管磁场强度为10.56 kA/m时,可获得TFe品位为63.88%、对原矿回收率为57.25%的磁选精矿。对试验各阶段产品分析表明,焙烧温度过高、焙烧时间过长会导致过还原,同时焙烧过程使得预富集精矿中表面光滑无裂纹的赤铁矿变为表面伴有微裂纹的磁铁矿。研究结果为多金属共(伴)生铁矿资源的高效利用提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号