首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
对大孤山磁铁矿石进行了磁脉冲预处理,使矿石内部沿不同矿物界面生成扩展裂纹和裂缝,进而提高磁铁矿的磨矿效率和分选指标。结果表明,在磁脉冲预处理磁场强度为39.81kA/m时,预处理后磨矿产品中-0.074mm含量提高0.25%~2.4%。在适宜的磨矿-磁选条件下,预处理后精矿的TFe品位提高0.41%~2.43%,铁回收率提高0.55%~1.81%。借助扫描电子显微镜和生物显微镜等检测手段,对预处理前后矿样的微观结构及磨矿产品的单体解离度进行分析,探讨了磁脉冲预处理提高铁矿石磨矿效率和分选指标的机理。  相似文献   

2.
针对包钢集团选矿厂反浮尾矿系统铁品位、回收率低的问题, 开展了搅拌磨细磨强化解离试验研究。进行了磁场强度、磨矿粒度等条件试验及反浮尾矿弱磁预选-搅拌磨细磨-弱磁选流程试验, 并对细磨前后矿样进行了粒度分布和解离度检测分析。结果表明, 立式搅拌磨细磨能有效提高铁矿物解离度, 提高矿物的分选指标: 在磨矿粒度为-0.037 mm粒级占94.5%时, 磁铁矿单体解度离度由细磨前的59.6%提高至86.2%, 获得铁精矿品位66.18%、回收率63.18%、精矿产率30.81%的技术指标。  相似文献   

3.
针对东鞍山烧结厂赤贫铁矿选矿过程中存在的流程复杂和铁精矿回收率低等问题,在矿 石工艺矿物 学研究基础上,提出采用“磨矿—弱磁—强磁—混磁精矿再磨—反浮选”短流程高效分选新技 术开展试验研究。结 果表明,在磨矿细度-0.074 mm 占 80%、弱磁选磁场强度 80 kA/m、强磁粗选磁场强度 480 kA/m、强磁扫选磁场强度 640 kA/m 的条件下得到混磁精矿;混磁精矿再磨细度为-0.038 mm 占 90%,然后在粗选矿浆 pH=11.5、淀粉用量 1 100 g/t、CaO 用量 750 g/t、ksIII 用量 1 300 g/t,精选 ksIII 用量为 650 g/t 条件下进 行反浮选,全流程扩大连续试验获得了精 矿铁品位 66.28%、回收率 76.67% 的技术指标。  相似文献   

4.
辽宁凤城含铀硼铁矿分选研究   总被引:1,自引:1,他引:0  
针对辽宁凤城硼铁矿资源,在测定矿石成分及其目的矿物嵌布特性的基础上,采用细磨磁选的方法进行了分选研究,并考查了磨矿细度对分选效果及磁铁矿解离度的影响。结果表明,随着磨矿细度的增加,磁选精矿中铁品位逐渐提高,B2O3和铀的品位呈缓慢降低趋势,当磨矿细度达到-320目占99.26%时,精矿中铁品位达到60.27%,回收率为76.76%,磁铁矿单体解离度为79.23%。该研究将为确定合理的分选工艺奠定基础。  相似文献   

5.
太钢袁家村闪石型赤铁矿石中铁以赤(褐)铁矿形式存在者占90.37%,其次为硅酸铁。矿石角闪石含量为12.60%,其比磁化系数比赤铁矿略低,给矿石磁选分离带来很大困难。为了给该类矿石选矿工艺的深入研究提供基础资料,在矿石工艺矿物学研究的基础上,对其进行了高梯度磁选分离特性研究。在对高梯度磁选指标有显著影响的磨矿细度、聚磁介质尺寸和背景磁场强度等进行单因素条件试验的基础上,对影响高梯度磁选过程的设备转环转速、脉动冲次和冲洗水量进行3因素3水平正交试验,确定了最佳的高梯度磁选分离试验条件,即磨矿细度为-0.074 mm占85%、磁场强度为796 kA/m、磁介质为2 mm棒介质、转环转速为2 r/min、脉动冲次为400次/min、冲洗水量为25 L/min,在此条件下获得了精矿铁品位为44.12%、回收率为81.66%的指标。对最佳条件获得的产品进行分析表明:角闪石具有弱磁性,磁选时富集于磁性产品中,这是造成分选指标较差的主要原因;精矿中铁矿物单体解离度低、连生体多,说明高梯度磁选过程中机械夹杂严重,也是造成精矿铁品位低的重要原因。要实现该类矿石的开发利用,需进一步开展磁化焙烧或深度还原等方法的研究。  相似文献   

6.
安徽某高硫磁铁矿选矿试验   总被引:1,自引:0,他引:1  
王斌 《现代矿业》2014,30(9):56-59
对安徽某高硫磁铁矿进行选矿试验研究,充分利用矿石性质差异,在条件试验的基础上,最终确定采用阶段磨矿-弱磁选-浮选工艺,获得的铁精矿TFe品位为66.07%、TFe回收率为73.68%、杂质硫含量为0.10%、硫精矿硫品位为37.67%、硫回收率为42.68%。通过筛分+弱磁组合工艺,能有效提前分选出单体解离较好的铁矿物,可降低2段入磨矿量65.28个百分点,节约成本效果显著。  相似文献   

7.
某铁矿由于矿石性质的变化,原磨矿细度难以获得理想的分选指标。为此开展了立磨机替代球磨机进行第三段磨矿的试验。研究表明,采用3台VTM 1500立磨机替换原2台MQY4.8 m×7.0 m球磨机,较好地解决了矿石单体解离度不足的问题;在精矿品位相当的情况下,精矿产率提高了4.92个百分点,回收率提高了7.64百分点,每年增加经济效益7 261.58万元。  相似文献   

8.
胡洋  张梦雨  陈飞  刘佳毅 《现代矿业》2019,35(8):116-119
试验用极贫铁矿石铁品位为13.90%,有害元素磷含量为0.86%,磁性铁占总铁的46.04%,主要以磁赤铁矿、磁铁矿形式存在,磁赤铁矿、磁铁矿以半自形变晶结构为主,嵌布粒度大于0.1 mm的超过75%,约有5%的磁赤铁矿的嵌布粒度小于0.05 mm。为确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,矿石采用3阶段磨选流程处理,在一段磨矿细度为-0.076 mm占38.5%、弱磁选磁场强度为115 kA/m,二段磨矿细度为-0.076 mm占74%、弱磁选磁场强度为115 kA/m,三段磨矿细度为-0.043 mm占92%、弱磁选磁场强度为115 kA/m的情况下,获得了铁品位为60.12%、铁回收率为40.22%的铁精矿,铁精矿硫、磷含量均较低,满足产品质量要求。  相似文献   

9.
对鄂西隐晶质鲕状赤铁矿进行磁化焙烧—阶段磨矿—磁选试验,得到TFe 57.73%、磷含量0.70%,铁回收率为90.41%的人工磁铁矿粗精矿。为继续提升精矿质量,对人工磁铁矿粗精矿进行细磨,磨矿细度-22μm含量80%时,单体解离度为84.63%。采用选择性絮凝—磁种法对细磨粗精矿磁选,进行了流程优化试验,得到了TFe 60.87%、磷品位0.41%的铁精矿,综合铁回收率提高了9.55%。机理分析表明,人工磁铁矿的磁性明显弱于天然磁铁矿,且随粒度减小,两者磁性差异进一步增大。在磁场强度70kA/m条件下,用作磁种的天然磁铁矿的比磁化系数是人工磁铁矿的2.4倍。在添加絮凝剂CMS后,FTIR分析表明絮凝剂CMS在磁铁矿表面产生了选择性吸附,使细磨粗精矿平均粒径或人工磁铁矿平均粒径均大幅度增大,而石英平均粒径增幅很小,从而增强了脉石与磁铁矿的分离效果,提高了铁的回收率。  相似文献   

10.
磁振动磁选机在庙沟铁矿的应用   总被引:1,自引:1,他引:1  
介绍了磁振动磁选机的结构,分选原理及应用情况生产,生产实践表明,该机可提高磁选精矿铁品位1.5个百分点,对于嵌布粒度不均匀的磁铁矿,可从一段磨矿后的粗精矿中提前分选出部分合格的粗粒铁精矿,为选矿厂节能降耗,减少铁矿物过磨损失探明了一条有效途径,是一种新型高效的磁选设备。  相似文献   

11.
秉新矿业铁矿石铁品位为18.50%,磁性铁品位为15.69%,矿石中铁矿物主要为磁铁矿,为粗细不等的粒状分布,磁铁矿集合体常包裹细粒脉石矿物。为了确定该矿石的高效开发利用工艺,进行了选矿试验研究。结果表明,矿石经高压辊磨机闭路破碎至-3 mm后再经粉矿干选机预选(磁场强度318.47 kA/m、转速80 r/min)抛尾,预选精矿在磨矿细度为-0.074 mm占85%的情况下经1粗1精弱磁选(磁场强度分别为191.08 kA/m和143.31 kA/m),获得了TFe品位为66.62%、回收率为80.98%的精矿。该工艺简洁、高效,适用于该矿石的开发利用。  相似文献   

12.
甘肃某微细粒嵌布的贫磁铁矿石因最终磨矿产品粒度极细,常规弱磁选指标较差。为改善选别效果、提高分选指标,对弱磁精选前的分散—选择性絮凝条件进行了研究,并借助激光粒度分析仪对分散—絮凝效果进行了测定。结果表明:矿石在磨矿1细度为-74μm占90.43%、磨矿2细度为-30μm占93.45%、弱磁精选1分散剂六偏磷酸钠用量为500 g/t,絮凝剂CMS用量为750 g/t,矿浆p H=11情况下,采用磨矿1—弱磁粗选—磨矿2—2次弱磁精选流程处理,最终获得铁品位为62.82%、铁回收率为79.12%的铁精矿,该精矿比常规弱磁精矿铁品位和铁回收率分别提高了1.28和5.08个百分点。分散—絮凝机理分析表明:在分散状态下,磁铁矿表面电荷负值较石英小,阴离子型絮凝剂CMS可通过氢键作用选择性吸附磁铁矿颗粒,显著增大磁铁矿微细颗粒的粒径,从而改善磁选效果、提高选矿指标。  相似文献   

13.
内蒙古某贫磁铁矿石为含磁铁矿石英岩,矿石铁品位为34.21%,杂质成分主要为Si O2。矿石中铁主要以磁铁矿形式存在,铁在磁铁矿中分布率为57.94%,其次为硅酸铁,占总铁的21.25%。为给该矿石的合理预选工艺提供参考,进行了高压辊磨—磁选预选抛尾试验。结果表明:破碎至-30 mm矿石经高压辊磨闭路破碎至-3 mm后湿式预选指标优于高压辊磨闭路破碎至-5 mm后干式预选指标,-3 mm产品在磁场强度为151.27 k A/m条件下弱磁选,获得的预选精矿铁品位为43.02%、回收率为83.21%,磁性铁品位为29.81%、回收率为99.17%,可抛除产率为33.79%的废石。矿石可磨度对比试验结果表明,在获得相同的磨矿细度时,高压辊磨破碎后矿石所需要的磨矿时间更短,且高压辊磨破碎粒度越细,矿石的可磨度越好。  相似文献   

14.
由于程潮矿业公司成品球团Al2O3含量超标,影响了成品球团的销售。为了降低铁精矿Al2O3含量,在工艺矿物学分析的基础上进行了磨矿—弱磁选试验。结果表明,微细粒磁铁矿与含铝矿物连生体的存在是导致程潮铁精矿Al2O3含量超标的主要原因;适当提高磨矿细度和降低磁场强度均能降低铁精矿Al2O3含量,其中,磁场强度为105.89 kA/m,磨矿细度为-0.076 mm占80%时,精矿Al2O3含量为1.06%,铁回收率为97.27%;磁场强度为113.85 kA/m,磨矿细度为-0.076 mm占85%时,精矿Al2O3含量为1.02%,铁回收率为97.98%。  相似文献   

15.
以无烟煤作还原剂,经过配料、圆盘造球、转底炉直接还原和磨矿-磁选工艺流程,从国内某铜渣中回收铁、锌,先后进行了基础实验和中试研究。所得最佳还原条件为:铜渣∶无烟煤∶石灰石∶工业纯碱=100∶21.5∶10∶1,还原温度1 280 ℃,还原时间38 min;转底炉排出的金属化球团的磨选条件为:一段磨矿细度-0.074 mm粒级占75.88%,磁场强度143.31 kA/m,二段磨矿细度-0.074 mm粒级占62.89%,磁场强度95.54 kA/m。基于上述条件经过转底炉直接还原流程,金属化球团磁选得到金属铁粉TFe品位92.38%,铁回收率88.39%;布袋收尘系统所得粉尘中氧化锌含量为74.25%。机理研究表明,铜渣中的硅酸铁和磁铁矿经过转底炉还原后转变为金属铁,易于通过磨矿-磁选的方法回收。  相似文献   

16.
为了探究通过提高磨矿细度降低河北柏泉磁选铁精矿钛含量的可行性,采用搅拌磨细磨(超细磨)-弱磁选工艺对试样进行降钛研究,在磨矿细度d90为34.7 μm,弱磁选磁场强度为83.6 kA/m的条件下,铁精矿TFe品位可由63.39%增加到65.48%,TFe品位达到一级铁精粉要求,且TFe回收率为97.85%,但铁精矿中杂质TiO2含量仅能降低1.04个百分点。通过XRD分析以及工艺矿物学分析查明,试样中钛主要存在于钛磁铁矿中;搅拌磨细磨(超细磨)-弱磁选工艺可以脱除铁精矿中的钛铁矿和钛赤铁矿,但是钛磁铁矿与磁铁矿属于类质同象,物理化学性质非常相近,难以通过磁选分离,这是该铁精矿的钛元素难以大量脱除的原因。研究结果表明,此类岩浆岩型高钛铁精矿品质较优,但钛不能通过选矿脱除,可用作其他低钛铁精粉高炉冶炼的配料。  相似文献   

17.
针对广西大厂贫铟锡多金属硫化矿石因磁黄铁矿含量上升,铅锑品位下降,铅锑混浮捕收剂效果差,造成铅锑精矿指标不理想的问题,进行了磁黄铁矿弱磁选-铅锑混浮工艺条件研究。结果表明,磨矿细度为-0.074 mm占46.88%的矿石,经1次磁黄铁矿弱磁选(磁场强度为120 kA/m)后,以丁铵黑药+苯胺黑药+DY为组合捕收剂进行1粗2精2扫铅锑混合浮选,获得了Pb+Sb品位为55.08%,铅、锑回收率分别为93.22%、90.94%,锌含量为4.61%的铅锑混合精矿,与生产现场相比,铅锑混合精矿Pb+Sb的品位提高了2.91个百分点,铅、锑回收率分别提高了7.06、5.13个百分点,锌含量下降了0.58个百分点。因此,组合捕收剂丁铵黑药+苯胺黑药+DY可显著改善铅锑混浮精矿指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号