首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
柴达木地区盐湖镁资源储量丰富,伴随锂和钾资源的开发利用会副产大量的富镁副产物。为提高盐湖镁资源利用率,本文以MgCl2与电石渣制备的Mg(OH)2为原料,研究煅烧工艺对煅烧产物粒径、比表面积、活性MgO含量、凝结时间的影响,并以煅烧产物为原料制备MOC试件,研究煅烧温度和原料配比对MOC试件的影响。研究结果表明:随煅烧温度的升高和保温时间的延长,煅烧产物的比表面积逐渐降低,粒径呈先降低后增加的趋势;随煅烧温度升高和保温时间的延长,煅烧产物中活性MgO含量逐渐增加,煅烧产物的凝结时间逐渐延长。当原料的煅烧温度为600℃,活性MgO与MgCl2摩尔比为6,MgCl2溶液波美度为27时MOC试件抗压强度较高,且抗压强度随龄期延长而逐渐增加。   相似文献   

2.
重庆秀山县隘口白云石矿Mg O品位20.88%,主要呈细晶结构,主要矿物为白云石,是优质的炼镁原料。为合理开发利用该资源,采用硅热法进行炼镁试验。结果表明:在煅烧粒度0.25~3 mm(需水洗)、煅烧时间60 min、煅烧温度1 080℃,可获得水化活性度35.32%、灼减0.32%的合格煅白;在炉料配硅比M=1.2、w(煅白)∶w(硅铁)∶w(萤石)=79.44∶17.57∶2.99、制球压强332~346 MPa,还原温度1 170℃、还原时间120 min、还原真空度5.2~7.2 Pa的条件下进行真空还原镁试验,可获得白云石镁还原率95.27%、硅利用率79.62%、粗镁纯度99.641%良好指标,为进一精炼镁提供了基础。  相似文献   

3.
以电石渣、水玻璃为原料,采用水热合成工艺制备多孔硅酸钙,考察了电石渣活化温度、石灰乳的消化时间、水热合成条件等因素对多孔硅酸钙的影响.研究发现,最佳的工艺条件为:电石渣煅烧活化温度950℃,消化时间2 h,按照钙硅比(Ca O/Si O2)1.0、反应温度105℃、搅拌速度800 r/min的进行水热合成反应.利用电石渣制备多孔硅酸钙为电石渣的综合利用开辟了新的思路.  相似文献   

4.
为实现工业固废电石渣的回收利用,进行以电石渣代替石灰为原料制备电石的可行性分析。采用多级旋振湿筛分离技术对电石渣除杂,采用压力测试等物理方法对电石渣灰球与天然石灰块的硬度、粉末率等性能进行比较分析。并以电石渣灰球为原料,在2 000 ℃以上的高温下进行煅烧试验。结果表明,除杂后的电石渣中CaO的含量为88.32%,活性度为378 mL,活性度较高,符合电石用石灰的理化指标;在高温、摩擦及跌落撞击条件下,电石渣灰球的抗压强度及粉末率均优于天然石灰块;电石渣灰球与焦炭在高温条件下煅烧的产物的主要成分为CaC2,为电石;将电石渣代替石灰以制备电石是可行的。  相似文献   

5.
以云南某地两种不同性状电炉冶炼钛渣为原料, 对氧化还原-流态化酸浸和活化焙烧-洗硅-流态化酸浸两种高钛渣制备人造金红石的工艺路线进行了试验研究, 并通过XRD、SEM分析等手段探讨了氧化还原和活化焙烧对高钛渣改性的机理。试验结果表明, 低硅含量的电炉钛渣采用氧化还原-流态化酸浸工艺可获得符合沸腾氯化钛白原料要求的人造金红石;采用活化焙烧-洗硅-酸浸工艺可得到TiO2品位97%的细粒级人造金红石。  相似文献   

6.
南京某电石渣粒度较细,-0.074 mm粒级产率占86.81%,CaO含量高达69.83%,主要杂质为SiO2、C等,影响产品白度的主要杂质为炭和含铁矿物。为了获得高品质的电石渣精矿,采用十二胺反浮选脱硅-煤油反浮选脱炭-湿式高梯度强磁选脱铁工艺对脱粗(+0.425 mm)后的电石渣进行了提纯试验。结果表明:脱粗后的电石渣经1粗1精1扫反浮选脱硅,1次反浮选脱炭,1次高梯度强磁选脱铁,可获得CaO品位为72.83%、CaO回收率为81.57%、白度为90.14%的优质电石渣精矿,满足高品质电石渣精矿的品质要求。  相似文献   

7.
综述了硅热法还原高炉渣、稀土富渣、稀土精矿及碳热法还原稀土氧化物、稀土富渣、氟碳铈精矿等生产稀土硅铁合金的工艺特点和技术进展,指出碳热还原法较硅热法具有能耗低,稀土收率高、无工业废渣等优点,分析了碳热还原法冶炼过程中的有关物理化学反应,碳热还原法工艺的关键是要强化稀土碳化物的生成。  相似文献   

8.
综述了硅热法还原高炉渣、稀土富渣、稀土精矿及碳热法还原稀土氧化物、稀土富渣、氟碳铈精矿等生产稀土硅铁合金的工艺特点和技术进展.指出碳热还原法较硅热法具有能耗低、稀土收率高、无工业废渣等优点.分析了碳热还原法冶炼过程中的有关物理化学反应,碳热还原法工艺的关键是要强化稀土碳化物的生成.  相似文献   

9.
以白云鄂博稀土尾矿酸浸渣作为原料进行了制备白炭黑的可行性试验,试验分别对硅浸出过程中的焙烧温度、时间以及焙烧药剂用量进行了研究。试验结果表明:以白云鄂博稀土尾矿酸浸渣和NaOH为原料,在熔盐体系下700 ℃煅烧2 h,酸浸渣中的SiO2浸出率达93%以上;用X射线衍射仪、红外光谱仪对所制白炭黑的分析表明,所制备的白炭黑为无定型的水合二氧化硅。  相似文献   

10.
以新开元工艺尾泥为主要原料,以电石渣和市政污泥为辅料,基于不同原料配方和烧制制度,考查了陶粒的工艺性能及影响因素。结果表明,以新开元工艺尾泥为主要原料,以电石渣和市政污泥为配料,在相应的工艺制度下可获得多种规格的达到标准要求的陶粒产品。  相似文献   

11.
从微米硅的金属辅助化学刻蚀、微米硅基合金酸刻蚀、微米SiO材料歧化酸刻蚀、微米SiO2的镁热还原制备三维多孔微米级硅负极材料方法出发, 概述了锂离子电池三维多孔微米硅负极的研发进展。基于微米颗粒构建三维多孔微米硅负极多孔化设计, 可以减少工序、保证较高压实密度, 微米多孔硅的孔隙预留了硅锂化后体积膨胀空间, 硅负极材料循环稳定性得到提升;其中镁热还原法制备多孔微米硅无需使用有毒试剂, 且原料来源广泛、价格低廉、工序简短、易于规模化生产, 该法制备的三维多孔微米级硅负极材料有望成为下一代硅基负极材料。  相似文献   

12.
以白云石和盐酸为原料制备氢氧化镁的研究   总被引:1,自引:0,他引:1  
介绍了以白云石经废盐酸酸化、除铁等精制过程得到的氯化镁为原料,以白云石灰乳为沉淀剂制备氢氧化镁的工艺流程。研究了原料的物质的量比、反应温度、加料时间、陈化时间等因素对产品质量的影响。结果表明,该工艺制备的氢氧化镁纯度达到98%以上,CaO质量分数低于0.5%,颗粒呈片状结构,形貌规则,分散性较好。  相似文献   

13.
熔盐电解法是生产金属锂的传统方法,但该法存在原料成本高、阳极会生成氯气、产品中钠含量高等问题。真空热还原法是将锂还原后,再利用饱和蒸汽压的差异来提取金属锂,产品分离简单,且产品中的钠含量较低,具有成本较低、工艺简单、产品纯度高、生产过程中基本无污染性气体产生等优点。文章综述了碳热还原、硅热还原和铝热还原等真空热还原法炼锂工艺的技术现状及存在的问题,介绍了一种以氢氧化锂为原料副产高白氢氧化铝的新型铝热还原炼锂新工艺,旨在为真空金属热还原法炼锂开拓新路径。   相似文献   

14.
本文介绍了以钾长石为原料和助剂白云石、氯化钠等在高温下生产硅钾钙镁肥的一种方法。并对生产原理做了进一步探讨,经过大量试验找到最佳反应条件。  相似文献   

15.
真空热还原法是原镁生产的主要方法,中国是世界上最大的原镁生产国。本文通过对皮江法、铝热还原氧化镁、碳热还原氧化镁三种制备金属镁方法的热还原反应的热力学计算,综合考虑一次性资源和能源消耗量、温室气体排放量和固体废物排放量、工艺过程的环境相容性等因素,得出如下结论:真空铝热还原法制备金属镁的工艺具有一次性资源消耗量低、固体废物排放量和温室气体排放量小的优点。结合白云岩钙镁分离过程,可以实现利用白云岩资源制取金属镁过程的清洁化生产。  相似文献   

16.
以石棉尾矿为原料,将其与氢氧化钠经混合焙烧、水浸得到焙烧水浸产物。考察主要工艺条件NaOH与SiO2摩尔比、焙烧反应温度和焙烧反应时间等对焙烧产物及焙烧水浸产物的影响,结合物相、结构变化等探讨去非金属氧化物作用过程和作用机制。结果表明,加碱焙烧的优化工艺条件为:n(NaOH)∶n(SiO2)摩尔比为4.0,反应温度为600℃,反应时间为2 h,此条件下加碱焙烧去非金属氧化物作用明显,水浸渣中主晶相均为氧化镁。当焙烧温度大于255℃时,随焙烧温度的升高,镁氧八面体片发生脱水,硅氧四面体结构破坏,形成可溶的硅酸镁钠;当焙烧温度为830℃时,硅酸镁钠由可溶物质转变为难溶物质。  相似文献   

17.
由改性高钛渣浸出制备富钛料的研究   总被引:6,自引:1,他引:6  
还原法制备的高钛渣 ,品位低 ,不适合直接作硫酸法和氯化法制备钛白的原料 ,经预氧化及加入添加剂等改性处理后可使钛组分富集于金红石相。选用经选择性富集的改性渣为原料 ,研究了改性渣中钛组分的选择性分离及其反应机理。实验结果表明 ,通过稀酸溶出改性渣可获得Ti O2 品位超过 95 %的人造金红石  相似文献   

18.
高镁锂比盐湖卤水镁锂分离工艺   总被引:1,自引:0,他引:1  
以酸化提硼后卤水为原料, 采用饱和氯化钾溶液作为沉镁剂, 使用三步结晶法进行了沉淀镁并富集锂的研究。结果表明, 通过3段蒸发结晶析出光卤石, 可以有效地实现镁锂分离:添加95%理论用量的氯化钾可以把原卤水中的镁锂质量比由10.1∶1降低到0.39∶1, 锂在滤液中总回收率为77.90%, 并使锂浓度从10 g/L富集到49.30 g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号