首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
周睿 《煤矿安全》2023,(3):58-66
逆断层区域构造应力与地应力叠加,挤压应力形成的力学特点导致瓦斯积聚,煤体渗透率发生改变,采掘期间容易引起瓦斯涌出异常,甚至发生煤与瓦斯突出事故。为了掌握逆断层区域采动煤体渗透率演化规律,首先开展了逆断层区域采动煤体渗透率测试试验,通过应力加卸载方式模拟逆断层影响下采动煤体应力变化,得出:在峰前阶段,煤体压缩、裂隙闭合,煤体渗透率降低;峰后阶段,煤体应力达到峰值,原有裂隙扩展连通,同时产生新裂隙并出现损伤,煤体渗透率增加并达到最大值;第1组加载方案模拟工作面前方煤体应力集中系数逐渐增大条件下,M1、M2和M3煤样的渗透率分别提高了22.1%、28.0%和36.7%,第2组加载方案模拟模拟工作面前方煤体应力集中系数先增大后减小条件下,M4、M5和M6煤样的渗透率分别提高了23.6%、37.2%和20.8%。然后结合煤体渗透率试验结果,建立了逆断层影响下采动煤体渗透率表征模型,推导出煤体峰前和峰后阶段渗透率计算表达式,用瓦斯吸附/解吸造成煤体体积应变的函数来表示吸附/解吸对煤体裂隙体积的影响,从而更加准确的表征逆断层影响下采动煤体渗透率。最后将渗透率模型导入COSMOL软件,结合新春煤矿1503工作面F4逆断层现场情况进行模拟计算,得出随着与逆断层距离减小,煤体应力集中系数增大的情况下,煤体瓦斯压力和渗透率峰值均逐渐增大,容易造成瓦斯涌出异常,需要加强瓦斯浓度监测。  相似文献   

2.
深部资源开采中,采动应力下煤体渗透率演化规律成为煤炭开采理论研究的热点之一。通过对煤体常规三轴渗流实验和采动应力路径下渗流实验对比分析,发现深部含瓦斯煤体在采动应力路径下其渗透率-体积应变异于常规三轴渗透实验。煤体常规三轴实验主要以三向应力加载为路径,而煤体在不断采出过程中其应力路径主要表现为特定方向加载其他方向卸荷的过程,可凝练为加轴压卸围压的应力路径,而应力-应变分析的起始点为静水压力状态,这必然引起煤体力学物理性质异于三向加载条件的行为。在采动应力条件下的渗透率-体应变空间内,以煤体体应变扩容点为界,当体应变达到扩容点后,随着体应变从压缩变形转换为膨胀变形,渗透率呈现出降低、稳态、增加的过程。为了定量地描述深部煤体渗透率在采动破坏或流变失稳过程中先减小后增大的行为,基于在体积应变空间内真实渗透网络是所有可能渗透网络中最优演化形式的假设,建立以渗透率、体积应变为变量的泛函关系,从而得出由体积应变表示的渗透率表达式。考虑深部煤体流变过程,将分数阶微积分理论推导的煤体体积蠕变方程代入渗透率函数中,得出以轴向应变为自变量的渗透率表达式。根据已有的实验数据对渗透率模型进行验证,结果表明:基于最优渗透网络得出的渗透率模型能很好地描述煤体渗透率在破坏过程中的演化规律,同时也可拟合流变过程中渗透率的变化趋势。  相似文献   

3.
深部高瓦斯工作面煤体采动扩容特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
应用数值模拟、实验室实验、现场实测和理论分析的综合研究方法,对深部高瓦斯工作面煤体采动扩容特性进行了系统研究。研究发现含瓦斯煤体应力峰值前出现扩容现象,煤体初始瓦斯压力对扩容有显著影响,初始瓦斯压力越大,煤体发生扩容的应力临界值越小,瓦斯压力越易发生突变。高瓦斯工作面煤体扩容阶段,瓦斯压力具有采动应力响应特征,采动应力作用下煤体扩容力学行为打破了瓦斯解吸和吸附的平衡,瓦斯压力呈现先降低后升高的瞬变演化。基于深部开采高瓦斯工作面煤体扩容力学特征,考虑煤体瓦斯解吸吸附特性,依据理想气体定律,构建了含瓦斯煤扩容阶段瓦斯压力采动应力响应的数值力学模型,揭示了煤体扩容区瓦斯压力不稳定易突变失稳的内在机理。深部开采煤层在采动应力作用下的扩容是煤与瓦斯动力灾害发生的必要条件,也是灾害防控的主要可控因素,通过降低煤层采动应力集中以控制煤体扩容,可有效消除煤与瓦斯动力灾变隐患。  相似文献   

4.
在对煤体全应力应变过程渗透性变化规律进行分析的基础上,基于应变等价原理,构建了以等效塑性应变为变量的损伤模型和以损伤变量作为过渡变量的渗透率演化方程,并采用数值模拟的方法对渗透率演化方程进行了应用。渗透性方程能够正确地表示出采动条件下煤体的渗透性变化规律,可为采动条件下煤层瓦斯渗流耦合规律的研究和提高煤层瓦斯抽采效果提供技术支持。  相似文献   

5.
采动煤体卸荷过程中,因原始及新生裂隙持续扩展而产生损伤破坏,导致渗透率急剧升高,经典煤储层应力-渗透率模型适用范围仅限于煤体线弹性变形阶段,无法反映煤体峰后渗透率的变化规律。借助在描述非线性力学行为方面具备独特优势的分数阶导数,通过已有试验和理论分析,基于现有应力-渗透率模型提出的适应于采动卸荷煤体的双参数分数阶渗透率模型,当阶数γ=0时,分数阶渗透率模型退化为经典的S-D模型,表明S-D模型是分数阶渗透率模型的一种特殊情形,当阶数γ=1时,分数阶渗透率模型表现为S-D模型的幂函数形式,展现峰后渗透率的强非线性变化特征,从而将经典S-D渗透率模型的适用范围拓展至峰后阶段。然而,双参数分数阶渗透率模型参数的物理意义不尽明确,为此,根据改进的Mazars损伤准则,获得了煤体卸荷过程中损伤变量的演化规律,借此探讨了所建渗透率模型中2个参数的关系,得到了只含损伤变量D的单参数分数阶渗透率模型,将模型中的静态参数修正为动态参数,符合损伤扩容过程中煤体割理压缩系数不断变化的事实,弥补了现有应力-渗透率模型中所引入的静态参数与损伤变量不关联的缺陷,使其物理意义更加清晰。将分数阶渗透率模型应用于充填采...  相似文献   

6.
深部含瓦斯煤体渗透率演化及卸荷增透理论模型   总被引:3,自引:0,他引:3       下载免费PDF全文
利用渗透率理论模型对深部煤层渗透率的变化进行了探讨,认为深部煤层地应力主导有效应力的变化,直接或间接的控制着渗透率。要有效增加煤层的渗透率,只能降低地应力。据此开展了煤体卸荷渗透率试验研究,获得煤体卸荷过程中既存在原始裂隙的扩展,也有新生裂隙的产生,两者的综合作用是导致卸荷煤体渗透率骤增的原因。在实验和理论分析的基础上提出了煤体卸荷渗透率演化概念模型,建立了考虑有效应力和瓦斯吸附/解吸变形等因素的、以应变为变量的煤体卸荷损伤增透理论模型。该模型搭建了煤体卸荷与增透的桥梁,可采用岩石力学软件获得的采场围岩应力场和应变场计算得到卸荷后煤岩的渗透率演化规律。最后在窑街煤田海石湾煤矿进行了应用,理论模型的应用使瓦斯抽采设计更科学和有效。  相似文献   

7.
成小雨  程成  陈龙  高涵  赵刚 《煤矿安全》2022,(12):115-120
为了改进含瓦斯煤多场耦合条件下的基础实验研究,自主研发了含瓦斯煤多场耦合渗流解吸实验系统,主要由恒压自动充气吸附单元、煤样瓦斯“面扩散”渗流解吸装置、瓦斯抽采单元、应力加卸载单元、非接触式应变测量单元、声发射监测单元、多参监测单元和实验系统管理软件组成;并应用该系统进行了煤体甲烷吸附解吸实验和含瓦斯煤受载过程中应力-应变-渗透规律研究。研究表明:煤体的吸附和解吸均符合指数函数,解吸率先快速增大后缓慢增加最终达到了平衡状态;同一时刻,随着粒径的减小,煤体吸附平衡时间越短、解吸率和解吸总量越大;含瓦斯煤应力-应变-渗透过程呈阶段特性,煤体渗透率在压密阶段快速降低;弹性变形阶段应变快速增大,渗透率缓慢降低并达到最小值;屈服阶段渗透率缓慢增加,峰后软化阶段渗透率快速增大。  相似文献   

8.
《煤矿安全》2017,(1):5-8
为准确判断高瓦斯低透气性煤层瓦斯采动卸压抽采的有效区域,进一步提高瓦斯抽采效果,采用渗流试验和理论分析的方法,研究了煤层采动过程中煤体渗透率随应力的变化规律。结果表明:在受采动影响不同阶段,含瓦斯煤体渗透率随应力变化呈现明显的阶段差异性。在煤体弹性变形阶段,煤体渗透率随应力的增加逐步降低;在煤体达到屈服点至煤体破坏阶段,随着应力的升高,煤体发生塑性变形,煤体内产生采动裂隙,渗透率开始缓慢提升;在煤体破坏后,煤体处于卸压状态,煤体渗透率随着应力的降低大幅提升。最后,通过现场本煤层瓦斯抽采效果分析验证了采动煤体渗流特性试验结果的正确性。  相似文献   

9.
《煤炭技术》2017,(3):159-162
基于孔隙率的定义,建立了考虑孔隙瓦斯压力、瓦斯吸附膨胀和地应力作用的含瓦斯煤渗透率模型,并研究了抽采过程中含瓦斯煤渗透率的动态变化特征。结果表明:含瓦斯煤的渗透率随地应力的增加呈指数形式降低,随瓦斯压力的减少呈现出先减小后增大的变化特征;瓦斯抽采过程中煤体弹性模量越小和吸附常数越大越有利于煤体渗透率的改善,而泊松比的变化对煤体渗透率的影响较小,对于合理地选择瓦斯抽采区域、布置瓦斯抽采工程和采取瓦斯抽采措施具有一定的指导意义。  相似文献   

10.
为了研究瓦斯抽采过程中煤体渗透率的变化规律,推导建立了考虑吸附膨胀应力的含瓦斯煤的孔隙率模型和含瓦斯煤的渗透率演化模型,通过三轴应力条件下的含瓦斯煤渗透率实验对该模型进行了验证,两者吻合度较高。基于该模型研究了在孔隙压力卸载状态下煤的弹性模量、初始孔隙率、吸附性常数、吸附膨胀应力系数等对渗透率的影响规律。结果表明:在气体卸压过程中,煤的弹性模量越小,其渗透率的变化率波动就相对越大;煤的初始孔隙率越小,其孔隙率的变化率越大,进而渗透率的变化率也就越大;煤的吸附膨胀应力系数对渗透率的影响作用与Langmuir吸附常数类似,其值越大则气体解吸所引起的渗透率增大就越强,渗透率下降就越缓慢。  相似文献   

11.
煤与瓦斯共采中煤层增透率理论与模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
地下开采中瓦斯抽采的针对性与有效性是煤与瓦斯共采的关键问题,其核心是在理论和技术上对采动引起的裂隙网络所形成的增透性进行定义和分析。在综合考虑煤体在不同开采方式形成的支承压力、孔隙压力和瓦斯吸附膨胀耦合作用对损伤裂隙煤体体积改变的影响的基础上,定义了一个新力学量--增透率,来反映单位体积改变下煤体渗透率的变化,推导了4种增透率的理论表达式,并对工程实例进行数值分析,定量描述了开采过程中覆岩和煤层中增透率的分布和演化,结果表明增透率能够反映开采扰动对煤岩体裂隙网络渗透性的影响,为煤与瓦斯共采工程中的煤层增透效果评价提供定量指标和科学方法。  相似文献   

12.
加卸载条件下原煤渗透率与有效应力的规律   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究采动过程中有效应力的变化对渗透率的动态演化的影响,基于自行研制的"含瓦斯煤热流固耦合三轴伺服渗流实验装置",进行了单调加载和不同初始应力状态加卸载条件下原煤渗流特性的试验研究。考虑瓦斯力学作用和瓦斯吸附作用两个方面对有效应力系数的影响,得到了加卸载条件下原煤的有效应力计算公式及渗透率与有效应力关系的公式,根据初始孔隙率、吸附常数等试验数据和不同条件下渗流试验数据对建立的渗透率与有效应力表达式进行验证。研究结果表明,理论计算值和试验结果吻合度比较高,单调加载与加卸载条件下原煤的渗透率随着有效应力的增加呈负指数关系下降。  相似文献   

13.
载荷作用下煤体变形与渗透性的相关性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
祝捷  姜耀东  孟磊  赵毅鑫 《煤炭学报》2012,37(6):984-988
利用含瓦斯煤热流固耦合三轴伺服渗流装置,进行了不同气体压力作用下煤样全应力应变过程的瓦斯渗流实验。实验结果显示,煤样渗透率与变形之间存在内在关联,渗透率变化呈现阶段性特点。基于考虑气体吸附性的含瓦斯煤有效应力,建立了加载煤样变形与渗透率的相关性模型,研究受荷煤样变形与瓦斯渗流的相互关系。理论分析表明:当应力控制边界条件时,渗透率与煤样变形密切相关;煤样渗透率的变化受到有效应力、煤样变形模量、孔隙率和气体吸附性的共同作用;有效应力系数是联系煤样变形和渗透率的关键参量。由于理论计算结果与实验曲线较为接近,因此模型反映了不同瓦斯压力下加载煤样变形与渗透率变化的基本特征。  相似文献   

14.
Stress distribution rules and deformation and failure properties of coal and rock bodies influenced by mining were analyzed. Experimental research on permeability of coal and rock samples under different loading conditions was finished in the laboratory. In-situ measurement of coal permeability influenced by actual mining was done as well. Theory analysis show that permeability varied with damage development of coal and rock under stress, and the influence of fissure on permeability was greatest. Laboratory results show that under different loading conditions permeability was different and it varied with stress, which indicated that permeability was directly related to the loading process. In-situ tests showed that permeability is related to abutment stress to some degree. The above results may be referenced to gas prevention and drainage. Supported by the National Major Fundamental Research Program of China (973 Project) (2005CB221503); National Science Foundation of China (50544010)  相似文献   

15.
循环载荷作用下煤体渗透率演化的实验分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘永茜 《煤炭学报》2019,44(8):2579-2588
多期次载荷作用下的煤体,其孔隙结构会发生复杂变化,渗透率也随之改变。然而,不同加卸载速率与循环周期决定着煤体渗透率变化路径,影响其应力敏感性,开展循环载荷控制下煤体渗透率演化规律研究,对于解释复杂应力场下煤层渗透率的各向异性特征有理论支撑作用。借助于煤层渗透率应力敏感模型分析,研究了影响煤体渗透率变化的关键表征参数及其函数关系;为验证关键参数对煤体渗透率影响,采用预定轴压和气压、加卸载围压的方式开展煤体三轴循环变载气体渗流实验,分析在不同围压(2.0~12.0 MPa)下煤体渗透率和体应变的演化规律;为研究煤体孔隙结构变化对渗透率的影响,通过低温氮气吸附实验和荧光显微镜煤样观测统计,完成了循环载荷加卸载前后煤体孔隙结构变化对比。研究结果表明,煤体加载/卸载过程中渗透率变化趋势与围压变化负相关,总体可以分为线性段、指数段和稳定段等3个阶段;随循环加载次数的增加煤体应变逐步增大,而渗透率却随之降低;相同条件下,煤体渗透率随体应变增加而升高,增幅在16.79%以上,而渗透率恢复率逐步降低,且与围压变化负相关;3次循环加卸载实验导致煤体孔隙结构发生了显著变化,微孔体积提高71.79%,比表面积增加52.19%,而平均孔径降低32.06%,但循环载荷没有改变煤体的最可几孔径;孔隙结构变化的数据表明,微孔体积增加是煤体渗透率劣化的重要标志之一。对比循环载荷作用前后的孔隙结构实验数据发现,影响气体吸附-解吸的孔隙结构变化,决定了"迟滞环"面积,而决定"迟滞环"形状的关键因素是由煤体最可几孔径控制的突变压力。另外,煤体应变包括裂隙体积变化和孔隙体积变化两部分,其中裂隙影响重要度指标(χ)反映了裂隙体积变化在煤体应变中的权重关系,χ变化随围压升高而降低。  相似文献   

16.
煤层的渗透率演化对研究矿井瓦斯抽采、煤层气开采及钻孔优化布置起到至关重要的作用。为了研究瓦斯压力-裂隙及应力-裂隙耦合作用对煤岩渗透率演化模型的影响,基于应变,探讨了瓦斯压力和应力作用对煤体裂隙变形和渗透率的影响,构建了基于瓦斯压力-裂隙及应力-裂隙耦合的煤体渗透率理论模型,并结合前人的试验数据,对建立的基于瓦斯压力-裂隙及应力-裂隙耦合的煤体渗透率模型进行了对比验证。研究结果表明:①将煤体的结构单元体简化为立方体模型,分别分析了瓦斯压力引起的裂隙变形与煤体基质吸附变形引起的裂隙变形对煤体渗透率的影响;基于煤岩裂隙宽度与渗透率的关系,推导了瓦斯压力-裂隙耦合作用下煤体的渗透率模型。②侧向应力对裂隙变形的影响与煤体吸附所引起的内膨胀变形相似,均通过改变煤体骨架向裂隙内部膨胀来影响煤体裂隙的变形;通过试验数据验证了侧向应力和法向应力对煤体渗透率的影响机理相同,构建了三向应力-裂隙耦合作用下煤体的渗透率模型。③结合前人的试验数据,进行了全局优化非线性拟合,与基于有效应力的模型相比,所构建的模型与试验数据吻合度较好,验证了所建立模型的可靠性,并发现裂隙对法向应力的敏感性远大于侧向应力。  相似文献   

17.
为掌握近距离煤层群叠加开采的应力-裂隙-瓦斯渗流规律,构建近距离煤层群煤与瓦斯高效共采技术体系及动态评价模型,以山西吕梁沙曲矿区为研究对象,采用物理相似模拟、超声波试验及SF6示踪气体现场监测相结合的研究方法,分析了沙曲矿区近距离煤层群煤层气资源的赋存特点,探究了沙曲矿区近距离煤层群多次扰动下煤岩损伤变量随应力的变化规律,建立了Boltzmann煤岩损伤方程,得出了沙曲矿区近距离煤层群叠加开采条件下采动应力演化-裂隙发育-瓦斯运移规律。研究结果表明:沙曲矿区煤层的孔裂隙结构特征不利于瓦斯运移,在近距离煤层群叠加开采条件下二次采动对于覆岩应力场和裂隙场的影响并非简单的效果叠加,而是“1+1>2”的影响效果,下伏煤层在叠加开采下产生了贯穿型裂隙,并在其周围衍生了大量的次生裂隙,为煤层瓦斯运移提供了优势通道;根据沙曲矿区煤-气共采不同阶段的时空条件和消突要求,分区分级优选并集成了近距离煤层群煤与瓦斯共采技术体系,即在规划区采用多种地面井规模化多煤层长时间预抽煤层气,在准备区采用多分支水平井井孔定向对接共采和保护层开采+底抽巷定向钻孔群抽采,在生产区采用大采高沿空留巷共采及大直径定向钻孔群共采技术;通过分析煤与瓦斯共采的影响因素,提出了近距离煤层群煤与瓦斯共采动态评价指标体系,建立了贝叶斯煤与瓦斯共采评价模型,实现了对沙曲矿区煤与瓦斯共采效果及矿井部署合理性的评价,得出沙曲一矿煤与瓦斯共采动态合理性概率为0.65、共采合理性等级为“较为合理”;最后阐述了近距离煤层群煤与瓦斯共采技术存在的关键问题,展望了近距离煤层群煤与瓦斯共采技术未来发展方向。  相似文献   

18.
上保护层开采下煤岩强扰动力学行为与渗透特性   总被引:2,自引:0,他引:2       下载免费PDF全文
保护层开采在低渗透高瓦斯近距离煤层中得到广泛应用,研究保护层开采扰动下的煤岩强扰动力学行为与渗透特性为进一步更加高效安全的开采被保护层煤层提供了理论支持。选取平煤集团十二矿上保护层己14煤层工作面己14-31010和被保护层己15煤层工作面己15-31030为研究对象,进行相似模拟试验和保护层开采过后被保护煤层受力分析。通过相似材料模拟试验获取保护层开采方式下被保护层的受力情况,上保护层开采过程中,煤层压力先增大后减小,采空区重新压实稳定后,应力状态近似恢复到原岩应力状态。通过对保护层开采后的被保护煤层受力分析获取煤层变形后的应力状态,上保护层开采过后,被保护层煤层产生变形,煤层上部分膨胀变形,应力小于原岩应力;下部分煤层压缩,应力大于原岩应力。结合二者的结果获取保护层开采方式下室内试验中被保护层煤层应力加载路径。依据被保护层煤层应力加载路径,设计进行采动耦合应力路径下的煤样渗流试验。试验结果表明:上保护层煤层开采过程中,同等试验条件下,被保护层煤层可承受的上保护层开采扰动应力越大,被保护层煤层开采过程中的煤体破坏应力峰值越大,体积应变越大;被保护层煤层开采过程中,M组煤样和N组煤样应力应变曲线与常规保护层卸荷三轴试验相比,扩容点出现位置明显提前;同等应力状态下,水压越大,煤样的体积应变越大;被保护层煤层开采过程中,M组煤样初始围压为35 MPa,围压对渗透率的影响大于轴压的影响,N组煤样初始围压为20 MPa,围压、轴压交替对渗透率产生主要影响,渗透率曲线呈现"W"型。两组试验中,扰动应力最大的试样破坏前的渗透率普遍大于其他试样的渗透率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号