首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以木耳为碳源,以钼酸钠、L-半胱氨酸分别为钼源和硫源,采用水热法原位合成一种碳包覆二硫化钼(MoS2@C)复合材料,用于锂离子电池负极材料。通过透射电子显微镜(TEM)和X射线衍射(XRD)对样品进行了系统的研究。以锂金属片为对电级,在两电极电池体系中进行电化学性能测试。结果表明:所制备的MoS2@C复合材料具有多孔碳包覆的结构和良好的电化学性能。MoS2@C展示出高的可逆容量(电流密度为0.1 A/g,容量为829.6 mAh/g),卓越的倍率特性(电流密度为2.0 A/g,容量为538.3 mAh/g)和良好的循环稳定性(电流密度为0.5 A/g时经过200次循环后,放电比容量保持率达94%)。所提出的策略还可进一步推广到其他过渡金属硫化物,用于超级电容器、钠离子电池和钾离子电池等储能领域。  相似文献   

2.
采用水热法在泡沫镍基底上直接生长NiCo_2O_4电极材料,分别用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学测试等手段研究了材料的结构和电化学性能。结果表明,NiCo_2O_4材料粒径尺寸均一,分散性好,该电极材料在1 A/g电流密度下放电比容量高达1 227 F/g,当充放电电流密度增大到10 A/g时,比电容为836.4 F/g,容量保持率为68%。在6 A/g的大电流密度下充放电循环1 000次后,仍有较为良好的容量保持率。NiCo_2O_4作为超级电容器电极材料展现出良好的容量属性和倍率性能。  相似文献   

3.
采用水热法在泡沫镍基底上直接生长NiCo_2O_4电极材料,分别用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学测试等手段研究了材料的结构和电化学性能。结果表明,NiCo_2O_4材料粒径尺寸均一,分散性好,该电极材料在1 A/g电流密度下放电比容量高达1 227 F/g,当充放电电流密度增大到10 A/g时,比电容为836.4 F/g,容量保持率为68%。在6 A/g的大电流密度下充放电循环1 000次后,仍有较为良好的容量保持率。NiCo_2O_4作为超级电容器电极材料展现出良好的容量属性和倍率性能。  相似文献   

4.
结合水热法和冷冻干燥法制备了高容量锂离子电池负极材料Sb/MoS2/C,利用X射线衍射、扫描电镜、透射电镜和X射线光电子能谱等手段对样品的结构和形貌进行了表征。结果表明,合成的Sb/MoS2/C复合材料的形貌结构为纳米片状。通过恒流充放电对样品进行电化学性能测试,结果表明,该材料具有杰出的电化学性能,在0.2 A/g电流密度下,循环200次后容量保持率为99%。  相似文献   

5.
以磷酸铁、碳酸锂为原材料,葡萄糖、碳纳米管和石墨烯为导电剂,通过砂磨工艺及碳热还原法制备了高性能磷酸铁锂、无定型碳、石墨烯、碳纳米管复合正极材料LFP/C/G/CNTs。材料表征结果表明,碳纳米管、石墨烯和无定形碳与磷酸铁锂复合在一起,成功构建了高速电子传输网络; 电化学性能测试表明,LFP/C/G/CNTs具有良好的循环性能和倍率性能。在0.1C电流密度下,LFP/C/G/CNTs放电比容量为161.5 mAh/g; 在5C电流密度下,LFP/C/G/CNTs复合材料放电比容量仍达126.5 mAh/g; 在2C电流密度下,循环200次后,LFP/C/G/CNTs放电比容量152.1 mAh/g,容量保持率为99.6%。  相似文献   

6.
采用简单的水热法在泡沫镍基底上直接生长NiCo2O4电极材料,并用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学测试研究了材料的结构和电化学性能。结果表明,NiCo2O4材料粒径尺寸均一,未发生团聚,并且材料表现出优异的电化学性能。NiCo2O4电极材料在1 A.g-1电流密度下放电比容量高达1227 F.g-1,当充放电电流密度增大到10 A.g-1,比电容为836.4 F.g-1,容量保持率为68%。并且电极材料在6 A.g-1的大电流密度下充放电循环1000次后,仍有较为良好的容量保持率,NiCo2O4作为超级电容器电极材料展现出良好的容量属性和倍率性能。  相似文献   

7.
以危险固体废弃物铝电解阳极炭渣为碳源,采用机械球磨法制备了用于锂离子电池负极的Si/C复合材料,研究了球磨工艺参数对所得复合材料电化学性能的影响。通过XRD、SEM分析观察材料结构和形貌,循环伏安法和恒电流充放电测试表征Si/C复合材料电化学性能。结果表明,球料比对所制备复合材料电化学性能影响不明显; 延长球磨时间、提高球磨转速有利于提升材料循环稳定性和可逆比容量。最佳球磨工艺参数为: 球料比5∶1,球磨时间25 h,球磨转速500 r/min。该条件下所得材料在120 mA/g的电流密度下循环100圈,容量保持在382.4 mAh/g。  相似文献   

8.
煤基活性炭电极材料的制备及电化学性能   总被引:6,自引:2,他引:4       下载免费PDF全文
以太西无烟煤为原料、KOH为活化剂制备高比表面积的活性炭.采用N2吸附法对活性炭的比表面积、孔容和孔径分布进行了表征,并评价了其用作超级电容器电极材料的电化学特性.在碱炭比为4∶1,800 ℃条件下活化1 h制备的活性炭比表面积达3 059 m2/g,总孔容为1.66 cm3/g,中孔率63%.该活性炭在3 mol/L KOH电解液中的比电容为322 F/g,大电流密度下充放电时的比电容保持率高,漏电流仅有0.06 mA,是理想的超级电容器电极材料.  相似文献   

9.
以印尼褐煤为原料,KOH为活化剂,在400~580 ℃的中低温活化条件下制备出超级电容器用煤基活性炭,采用低温N2吸附、X射线衍射(XRD)及扫描电子显微镜(SEM)对其孔结构、微晶结构以及表面形貌等进行表征,并评价了其用作超级电容器电极材料的电化学性能。结果表明:在KOH活化制备煤基活性炭的活化过程中,KOH与煤中C的反应始于400~460 ℃;随着活化温度的升高,活性炭的比表面积及总孔容增大,孔径分布变宽,中孔率提高。当活化温度达到580 ℃时,所制活性炭的比表面积高达1 598 m2/g,总孔容达0.828 cm3/g,中孔率达41.4%,该活性炭用作电极材料在3 mol/L KOH电解液中具有良好的充放电性能,在50 mA/g的低电流密度下比电容高达369 F/g,在2 500 mA/g的高电流密度下比电容仍保持305 F/g,其漏电流仅为0.02 mA,且具有良好的循环性能,经1 000次循环后,比电容保持率超过92%,是一种理想的超级电容器电极材料。  相似文献   

10.
李江鹏  张晓萍  伍凌 《矿冶工程》2021,41(6):198-201
采用氢氟酸刻蚀法制备了Ti3C2 MXene,研究了刻蚀温度和刻蚀时间对Ti3C2结构、形貌及电化学性能的影响。研究结果表明,室温下制备的Ti3C2呈手风琴状,随着刻蚀温度升高,Ti3C2层间距逐渐增大,且多层Ti3C2逐渐转变成单层结构。室温下刻蚀速度较为缓慢; 随着刻蚀时间延长,Al原子层逐渐被溶解,刻蚀24 h以上可得到手风琴状多层Ti3C2。电化学研究结果表明,室温下刻蚀24 h制备的多层Ti3C2 MXene电化学性能较好,该样品在0.1 A/g电流密度下的首次放电比容量为450.6 mAh/g,循环700次后比容量仍有124.1 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号