首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
磁化焙烧工艺作为处理难选铁矿资源的有效工艺,近年来在铁矿资源开发中的应用研究取得了巨大进展。在铁矿磁化焙烧的工业化生产中,焙烧产品的冷却是影响焙烧产品品质的重要环节。以西北某矿区褐铁矿为研究对象,通过拣选—强磁选—重选流程得到纯度为 92.0% 以上的褐铁矿作为试验物料进行磁化焙烧,考察了惰性气氛冷却、水淬冷却、空气气氛冷却对焙烧产品的影响,深入研究了空气气氛冷却方式下,焙烧产品在不同氧化温度、氧化时间条件下的氧化行为和相变情况。结果表明:焙烧产品在惰性气氛和水淬方式冷却过程中基本不发生氧化反应;在空气冷却方式下,氧化温度和氧化时间对褐铁矿磁化焙烧矿产品影响显著;在氧化温度为 100 ℃ 时,焙烧产品基本不发生氧化。在氧化温度高于 300 ℃时,焙烧产品开始发生明显氧化。氧化温度为 400 ℃、氧化时间 2.0 min 时,焙烧产品中的磁铁矿全部被氧化。磁化焙烧产品氧化后生成 α-Fe2O3和 γ-Fe2O3两种铁物相,在氧化反应过程中先生成 γ-Fe2O3,后生成 α-Fe2O3。试验结果可以为褐铁矿磁化焙烧工艺的优化提供参考。  相似文献   

2.
磁化焙烧工艺作为处理难选铁矿资源的有效工艺,近年来在铁矿资源开发中的应用研究取得了巨大进展。在铁矿磁化焙烧的工业化生产中,焙烧产品的冷却是影响焙烧产品品质的重要环节。以西北某矿区褐铁矿为研究对象,通过拣选—强磁选—重选流程得到纯度为 92.0% 以上的褐铁矿作为试验物料进行磁化焙烧,考察了惰性气氛冷却、水淬冷却、空气气氛冷却对焙烧产品的影响,深入研究了空气气氛冷却方式下,焙烧产品在不同氧化温度、氧化时间条件下的氧化行为和相变情况。结果表明:焙烧产品在惰性气氛和水淬方式冷却过程中基本不发生氧化反应;在空气冷却方式下,氧化温度和氧化时间对褐铁矿磁化焙烧矿产品影响显著;在氧化温度为 100 ℃ 时,焙烧产品基本不发生氧化。在氧化温度高于 300 ℃时,焙烧产品开始发生明显氧化。氧化温度为 400 ℃、氧化时间 2.0 min 时,焙烧产品中的磁铁矿全部被氧化。磁化焙烧产品氧化后生成 α-Fe2O3和 γ-Fe2O3两种铁物相,在氧化反应过程中先生成 γ-Fe2O3,后生成 α-Fe2O3。试验结果可以为褐铁矿磁化焙烧工艺的优化提供参考。  相似文献   

3.
为研究菱铁矿热分解过程中FeO磁化反应,给菱铁矿悬浮磁化焙烧工艺优化提供理论指导,采用气体成分分析系统对菱铁矿热分解过程中FeO磁化反应动力学进行了研究。结果表明,随着磁化反应温度的升高,达到相同反应分数所需时间逐渐缩短,反应速率的峰值逐渐升高。不同磁化反应温度下,反应分数及反应速率均随时间的变化呈现出相似的规律。同时,采用模型匹配法对试验数据分析表明:FeO磁化反应动力学符合G(α)=[-ln(1-α)][12]动力学模型,其表观活化能为56.01 kJ/mol,指前因子A为6.07 s-1。菱铁矿热分解过程中FeO磁化反应过程的限制环节为气体扩散与界面反应控制。  相似文献   

4.
磁化焙烧工艺作为处理难选铁矿资源的有效工艺,近年来在菱铁矿资源开发中的应用研究取得了巨大进展。在菱铁矿磁化焙烧的工业化生产中,焙烧产品的冷却是影响焙烧产品品质的重要环节。以西北某矿区菱铁矿为研究对象,通过拣选—强磁选—重选流程得到纯度为80.6%的菱铁矿作为试验物料进行磁化焙烧,考察了惰性气氛冷却、水淬冷却、空气气氛冷却对焙烧产品的影响,深入研究了空气气氛冷却方式下,焙烧产品在不同氧化温度、氧化时间条件下的氧化行为和相变情况。结果表明:焙烧产品在惰性气氛冷却和水淬方式冷却过程中基本不发生氧化反应;在空气冷却方式下,氧化温度和氧化时间对菱铁矿磁化焙烧产品的影响显著;在氧化温度为100℃,焙烧产品基本不发生氧化;在氧化温度高于300℃,焙烧产品开始发生明显氧化;氧化温度为500℃、氧化时间2.5 min时,焙烧产品中的磁铁矿全部被氧化。磁化焙烧产品氧化后生成α-Fe_2O_3和γ-Fe_2O_3两种铁物相,在氧化反应过程中先生成γ-Fe_2O_3,后生成α-Fe_2O_3。试验结果可以为菱铁矿磁化焙烧工艺的优化提供参考。  相似文献   

5.
磁化焙烧工艺已成为处理难选铁矿资源的主要手段,焙烧产品冷却方式是影响磁化焙烧产品选别指标的重要因素。以海南某赤铁矿纯矿物为研究对象,考察了其磁化焙烧后惰性气氛、水淬冷却和空气气氛冷却方式对焙烧产品磁铁矿氧化程度的影响。结果表明:惰性气氛可以有效防止磁铁矿发生氧化反应,产品单位质量磁矩最大,为74.2 A?m2/kg;水淬冷却过程中发生轻微的氧化反应,产品单位质量磁矩为72.5 A?m2/kg;而空气冷却方式下,磁铁矿冷却过程中部分氧化为赤铁矿,焙烧产物的单位质量磁矩仅为37.6 A?m2/kg。空气气氛冷却受冷却初始温度影响较大,随着冷却初始温度的降低,冷却产物FeO含量逐渐增加,单位质量磁矩逐渐增加,比磁化系数逐渐增加。试验结果可以为难选铁矿石磁化焙烧过程优化提供参考。  相似文献   

6.
磁化焙烧是处理菱-赤混合型铁矿石最有效的手段,焙烧过程的动力学研究可为实现该类铁矿石磁化焙烧关键技术提供理论支撑。采用X射线衍射、自制热重分析炉、扫描电镜等途径对矿石磁化焙烧过程的动力学及焙烧产品的微观形貌进行了研究,结果表明:矿石在焙烧过程中可不添加任何还原剂使菱铁矿和赤铁矿全部转变为磁铁矿,菱铁矿分解反应的发生是整个反应过程的限制性环节;在一定范围内增加焙烧温度,可使矿石的焙烧反应更加完全,同时有利于矿物在较短的时间内达到较高的反应速度,缩短反应完成所需要的时间。矿石磁化焙烧过程的机理函数符合随机成核与随后生长模型,表观活化能E和指前因子A分别为74.48 k J/mol、27.39 min-1。焙烧后产品表面有大量微裂纹产生,铁矿物与脉石矿物共生关系紧密,在后续选别作业前还需对其进行细磨,焙烧产品中Mg、Ca、Mn元素与Fe元素以类质同象形式共生,将影响最终铁精矿品位。  相似文献   

7.
焙烧-磁选法是处理低品位难选氧化铁矿石的有效方法。归纳了铁矿焙烧过程动力学研究常用的3种表征方法,着重介绍了基于热重分析技术的静态法和动态法在铁矿石焙烧过程动力学研究方面的运用。总结了磁化焙烧、直接还原和深度还原过程动力学近年来的研究成果。指出菱铁矿磁化焙烧过程根据TG和DTG曲线可分为两个阶段,其反应机理分别符合随机核化和核生长机理;铁矿石直接还原过程根据TG和DTG曲线分为几个阶段,再由各阶段活化能的差异分为缓慢反应阶段和快速反应阶段,由此可以找出焙烧过程的限制环节;赤铁矿在深度还原过程中经历缓慢反应-快速反应-趋于平衡3个阶段,整体反应符合随机成核及长大模型,活化能约为320 kJ/mol。指出今后应加强对实际矿石磁化焙烧动力学的研究,为实际难选矿磁化焙烧关键技术提供理论支撑;还应注重焙烧过程热力学与动力学研究的结合,对焙烧过程进行计算机模拟等方面的研究。  相似文献   

8.
以磁铁矿和赤铁矿纯矿物为研究对象,考察了气体流量、一氧化碳浓度、焙烧温度、焙烧时间对磁铁矿诱导赤铁矿磁化焙烧过程的影响。结果表明:随着磁铁矿添加量的增加,焙烧产品饱和质量磁矩和反应分数都逐渐提高,即磁铁矿对赤铁矿磁化焙烧的诱导作用越来越强。随着磁化焙烧气体流量、焙烧温度、焙烧时间的增加,焙烧产品饱和质量磁矩和反应分数的增大趋势总体来说先增强后减弱,即磁铁矿对赤铁矿磁化焙烧的诱导作用是先增强后减弱的;随着一氧化碳浓度的增加,磁铁矿对赤铁矿磁化焙烧的诱导作用逐渐减弱。试验结果对优化铁矿石焙烧工艺,提高磁化焙烧过程焙烧效率具有一定的指导意义。  相似文献   

9.
针对赤铁矿开展了CO和H2气氛下的矿相转化试验,详细研究了还原过程动力学,并采用X射线衍射和扫描电镜对其相变和微观结构变化进行研究,以对比CO和H2矿相转化效果的差异及微观结构演变规律。结果显示,在温度460~620℃范围内,矿相转化温度的提高可以明显加快反应的速率。在CO气氛下,反应模型为收缩核模型,积分形式为G(α)=1-(1-α)1/2,其表观活化能为8.35kJ/mol,指前因子为0.21min-1;在H2气氛下,反应模型为收缩核模型,积分形式为G(α)=1-(1-α)1/3,其表观活化能为20.73kJ/mol,指前因子为4.37min-1。SEM分析结果表明,在矿相转化过程中,气体的吸附和赤铁矿的矿相转化优先发生在赤铁矿颗粒的表面和裂缝处,反应从颗粒表面和裂隙逐渐向内进行,温度应力和相变应力产生的裂纹为气体扩散提供了通道,这有利于气体及气体产物在颗粒中的内扩散,加速反应的进行。在同等试验条件下,H2的...  相似文献   

10.
石煤提钒焙烧过程钒的价态变化及氧化动力学   总被引:10,自引:5,他引:5  
含钒石煤是我国重要的钒矿资源, 钒的焙烧氧化是石煤提钒的基础。以湖北某地钒矿为研究对象, 首先采用电位滴定对氧化焙烧过程中钒的价态变化进行了研究。在此基础上, 探索了钒氧化过程中控制反应速率的步骤, 测定了动力学参数--表观活化能。研究表明, 石煤中钒主要赋存在伊利石中, 焙烧过程中钒的氧化过程是逐级氧化过程(V(Ⅲ) →V(Ⅳ)→ V(Ⅴ)), 钒的氧化反应属扩散动力学控制, 其动力学表观活化能为E1=81.19 kJ/mol。  相似文献   

11.
针对包头固阳褐铁矿磁化焙烧过程中含有丰富孔隙结构的特点, 采用氮气吸附法在77 K 下对-0.074 mm褐铁矿粉进行了吸附-脱附等温线测定, 研究了其孔径分布、比表面积等孔结构变化, 计算得到其脱水矿的体积比表面积为1.152×108 m2/m3。在此基础上, 考虑到还原气体浓度、化学反应和孔隙结构变化对褐铁矿颗粒磁化焙烧过程的影响, 提出了传热、传质与孔隙变化的耦合动力学模型, 以模拟褐铁矿颗粒在773~873 K温度区间下的磁化焙烧过程。通过数值计算得到颗粒在不同温度下的还原度随时间的变化, 同时模拟了一氧化碳在颗粒内部的浓度分布变化, 颗粒粒度为-74 μm, 873 K下, CO浓度为10%时, 还原度达到1时所需时间为80 s。  相似文献   

12.
印尼某高铁铝土矿原矿铁品位为 14.06%,铁矿物主要以赤(褐)铁矿形式存在,采用悬浮磁化焙烧—磁 选技术处理高铁铝土矿,并开展了系统的高铁铝土矿悬浮磁化焙烧试验研究。结果表明,悬浮磁化焙烧最佳条件为给 料粒度-0.074 mm占50%、焙烧温度600 ℃、焙烧时间20 min、CO浓度为20%、总气体流量500 mL/min,在此最佳条件下 进行悬浮磁化焙烧试验,焙烧产品在磁场强度为133.6 kA/m的条件下进行弱磁选,最终可获得Al2O3含量68.55%、回收 率为74.43%、铁去除率为65.63%的铝精矿。悬浮磁化焙烧技术实现铁铝高效分离,降低了原矿中铁品位和水分,大幅 度提高了高铁铝土矿的Al2O3含量,达到了除铁提铝的技术目标。  相似文献   

13.
烧结法熟料溶出过程动力学研究   总被引:1,自引:0,他引:1  
张建 《矿冶》2008,17(4)
本文研究了烧结法熟料溶出过程的动力学。在选择合适的溶出过程液固比和搅拌速度的情况下,考察了不同温度对熟料溶出过程的影响,给出了熟料溶出动力学模型;对不同温度下的动力学数据进行回归处理,计算出了各个模型参数,得出了动力学方程。结果表明,熟料溶出过程的动力学方程为-dηAl2O3/dτ=8.05×10-2exp(-17.964×103/RT)(1/CAl2O3)1.17(1/CSiO2)0.03,表观活化能为17.96kJ/mol,反应速率由扩散步骤控制。根据求得的动力学方程数值模拟了各影响因素与表观速率(-dη/dτ)之间的关系,模拟结果与实验和生产实际相吻合。  相似文献   

14.
新疆某镜铁矿矿石TFe含量为35.20%,CaO含量为30.64%;铁矿物主要为镜铁矿,脉石矿物主要为方解石和石英。矿石中镜铁矿嵌布粒度微细,属于难选铁矿石。为考察矿石磁化焙烧过程物相转变规律,进行了焙烧温度、焙烧时间和配煤比对其磁化焙烧效果、铁物相转变过程的影响规律试验。结果表明:在配煤比为12%、焙烧温度为800 ℃、焙烧时间为75 min条件下还原焙烧后,焙烧产品磨细至-0.074 mm占90%,在磁场强度为120 kA/m条件下弱磁选,可获得铁品位为65.95%、回收率77.70%的指标。焙烧温度对镜铁矿磁化焙烧过程影响显著。焙烧温度低于800 ℃时镜铁矿磁化焙烧转变为Fe3O4,焙烧温度为800 ℃时,焙烧产品Fe3O4含量最高;焙烧温度高于800 ℃时,部分Fe3O4又被还原为FeO,产生过还原现象;焙烧温度为900 ℃时,焙烧产品FeO含量最高;焙烧温度达到1 000 ℃时部分FeO被还原成金属Fe。此过程与磁选结果的变化规律相符。另外,焙烧温度达到900 ℃时,部分Fe2O3与CaO反应,生成了2CaO·Fe2O3,不能通过弱磁选回收。试验结果为该镜铁矿资源的合理利用提供了技术参考。  相似文献   

15.
蔡新伟  葛英勇  瞿军 《金属矿山》2015,44(11):66-69
为了确定重庆某高度氧化的菱铁矿资源的开发利用方案,采用磁化焙烧—磨矿—弱磁选工艺进行了选矿试验。结果表明:在磁化焙烧温度为800℃、焙烧时间为50 min、配碳量为10%、磁化焙烧产物的磨矿细度为-200目占88%、弱磁选磁场强度为119.43 k A/m的情况下,可获得铁品位为58.94%、铁回收率为76.38%的弱磁选精矿;弱磁选精矿中Al2O3、Mg O、Mn O的含量较高,是仅次于Si O2的影响精矿铁品位的因素,这些杂质有待后续反浮选试验脱除。  相似文献   

16.
我国每年产生大量的粉煤灰,从粉煤灰中提取氧化铝是一种提高资源综合利用率和解决铝资源短缺的方法。粉煤灰的活性大小直接影响氧化铝的提取,氯化钙作为焙烧助剂能够有效活化粉煤灰。将CaCl_2与粉煤灰在实验设定温度和时间下进行混合焙烧,焙烧熟料用硫酸浸出,浸出液中氧化铝的含量用EDTA络合滴定法测定。分析了粉煤灰与CaCl_2混合焙烧过程中实验参数对氧化铝浸出率的影响,探讨焙烧反应的动力学和机理。结果表明,优化条件为:焙烧温度900℃、焙烧时间30min、氯化钙与粉煤灰质量比1∶1,在此条件下氧化铝的浸出率为93.48%,反应主要产物为CaAl_2Si_2O_8、CaSiO_3、Ca_(12)Al_(14)O_(33)和Ca_3Fe_2(SiO_4_)3。粉煤灰与CaCl_2反应受内扩散控制,其表观活化能为E_a=20.13kJ/mol,反应动力学方程:1-2x/3-(1-x)~(2/3)=0.0517exp[-20130/RT]t。  相似文献   

17.
以煤矸石电厂循环流化床灰(CFB灰)为原料,研究了CFB灰中Fe2O3酸浸出过程的影响因素及其酸浸出过程动力学。试验结果表明:盐酸浓度20.2%、酸浸温度110℃、酸浸时间1.0h、液固比为4∶1,Fe2O3的浸出率为91.74%。在一定时间内,CFB灰加热酸浸过程符合典型的反应核收缩模型。其反应动力学方程可用1-(1-α)1/3=k′t来描述,反应表观级数为0.999 2,反应活化能为42.063kJ/mol,过程速率为化学反应速率控制。  相似文献   

18.
针对包子铺褐铁矿石进行了微波悬浮磁化焙烧试验研究。结果表明,原矿铁品位为32.89%,赤、褐铁中铁分布率为98.45%,主要杂质Si O2含量为33.88%,有害元素P含量为1.22%。条件试验确定的微波悬浮磁化焙烧条件为:焙烧温度500℃、焙烧时间5 min、微波功率550 W、CO体积分数20%。将焙烧产品磨至-0.045 mm占74.47%,再进行弱磁选(磁场强度120 k A/m),可获得铁品位为58.05%、回收率为90.24%的铁精矿产品。通过化学多元素分析、X射线衍射(XRD)和振动样品磁强计(VSM)分析发现,通过微波磁化焙烧,原矿中的赤、褐铁矿转化为磁铁矿,矿石的饱和磁化强度及比磁化系数得到显著增强,可以通过磁选有效回收铁矿物。  相似文献   

19.
对硫酸铵焙烧粉煤灰的熟料溶出过程进行了动力学研究,根据不同温度、不同搅拌强度、不同液固比中Al2O3的溶出率和反应时间的关系,计算该反应的表观活化能为19.93 kJ/mol,熟料的溶出过程受通过固体产物层的内扩散控制,动力学方程为:1+2(1-x)-3(1-x)2/3=4.52exp{-19929/RT}·t。在液固比8:1,溶出温度为90℃,搅拌强度为300 r/min,溶出时间70 min的条件下,Al2O3的溶出率可达84%。  相似文献   

20.
某复杂难选红铁矿磁化焙烧-磁选工艺及机理研究   总被引:3,自引:2,他引:1  
对某复杂难选红铁矿进行了磁化焙烧-磁选工艺研究。试验结果表明, 在焙烧温度为950 ℃, 焙烧时间为15 min, 碳粉(0~1 mm)用量为15%, 磁场强度为0.16 T, 磨矿粒度-0.074 mm粒级占87%左右的条件下, 可获得Fe含量为63.06%、回收率为88.45%的铁精矿。磁化焙烧-磁选机理研究表明, 红铁矿经磁化焙烧后的产品呈疏松多孔结构, 有利于磨矿作业; 红铁矿在950 ℃下磁化焙烧15 min, 焙烧产品的物相仅为Fe3O4。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号