首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
在Thermecmastor-Z动态热模拟试验机上对Ti-43Al-4Nb-1.4W和Ti-43Al-4Nb-1.4W-0.6B-0.2Y合金进行高温压缩变形实验(实验温度范围为1 050~1 150℃,应变速率范围为0.001~1 s 1),对其热变形组织进行显微分析,并利用热加工Z参数(Zener-Hollomon参数)综合描述变形温度及应变速率对材料热变形行为的影响。结果表明:2种合金在不同高温压缩变形条件下均发生不同程度的动态再结晶;随Z参数值的降低,β相逐渐由不规则形状转变为球形,且长大明显,同时,动态再结晶晶粒的体积含量也随之增加;Ti-43Al-4Nb-1.4W基合金的高温变形机制与Z参数值密切相关;在低Z值条件下,其主要变形机制为动态再结晶和β相的球化、长大;在高Z值条件下,其主要变形机制为片层的扭折、重新取向和局部动态再结晶;加入微量B和Y后,动态再结晶程度增大,这主要与颗粒诱发动态再结晶形核有关。  相似文献   

2.
在Thermecmastor-Z动态热模拟试验机上对Ti-43Al-4Nb-1.4W合金进行高温压缩变形实验,实验温度范围为1 050~1 150℃,应变速率范围为0.001~1 s 1。根据该合金的真应力-真应变曲线,建立合金高温变形的本构方程和热加工图,并对不同变形区域的组织进行分析。结果表明:Ti-43Al-4Nb-1.4W合金高温压缩变形峰值应力与变形条件的关系可用双曲正弦函数来表示,其变形激活能为567.05 kJ/mol,高温变形的本构方程为:ε=3.37×1018.[sinh(0.0043σ)]3.27exp[567.05/(RT)];加工图显示该合金最佳加工区域的应变速率为0.001~0.01 s 1(η范围在40%~55%),在此加工区域内合金发生较明显的动态再结晶和β相的球化。  相似文献   

3.
在Gleeble-3500热模拟试验机上对Ti-25Al-14Nb-2Mo-1Fe合金进行了等温恒应变速率压缩试验,研究了在变形温度为950~1 100℃,应变速率为0.001~1 s-1,最大变形程度为50%的条件下合金的热压缩变形流变应力行为与微观组织演变。结果表明:Ti-25Al-14Nb-2Mo-1Fe合金的流变应力对变形温度和应变速率均较为敏感,其流变应力曲线具有应力峰值、流变软化和稳态流变的特征。在变形温度为950℃,应变速率为0.001~0.1 s-1的条件下,Ti-25Al-14Nb-2Mo-1Fe合金的热变形特性为片层组织球化,其热变形机制可用晶界分离球化模型进行解释说明;在变形温度为1 000~1 100℃,应变速率为1 s-1的条件下,材料只发生了动态回复现象;在变形温度为1 050~1 100℃,应变速率为0.001~0.1 s-1的条件下,材料发生了动态再结晶现象。  相似文献   

4.
利用Gleeble-1500D热模拟试验机研究了Ti-44Al、Ti-44Al-6Nb和Ti-44Al-6Nb-1Cr-2V合金在1 100~1 250℃和0. 01 s-1条件下的热变形行为。研究结果表明,添加β相稳定元素可降低TiAl合金的流变应力,在相同变形条件下Ti-44Al-6Nb-1Cr-2V合金具有更低的峰值应力。高温变形时,TiAl合金主要发生片层弯曲和拉长协调变形,以及片层团晶界处动态再结晶和B2相协调变形。动态再结晶程度随着变形温度的升高以及β相稳定元素含量的提高而增加,B2相协调变形和促进动态再结晶是TiAl合金的主要软化方式。添加β相稳定元素和控制B2相含量能有效改善TiAl合金热加工性能。  相似文献   

5.
以Ti-45Al合金粉、Nb粉、Al粉和TiB2合金粉为原料,采用放电等离子烧结法制备含纳米TiB增强相的Ti-45Al-7Nb-1B合金,通过热模拟实验研究该合金在900~1 200℃、应变速率为0.001~1 s-1条件下的热变形行为,推导出高温变形流变本构方程,并建立基于动态材料模型的热加工图。结果表明:含纳米TiB增强相的Ti-45Al-7Nb-1B合金的高温流变应力与变形条件之间的关系可用双曲正弦函数描述,其高温变形激活能为497.95k J/mol,在高应变速率(0.1 s-1)条件下变形时,材料发生失稳变形,最佳变形参数区间为1 000~1 130℃/0.001~0.01 s~(-1)。  相似文献   

6.
利用Gleeble—3800型热模拟试验机对经过真空熔炼的Ti-25Al-15Nb-1Mo合金进行了等温压缩实验,研究了在1 100~1 200℃及0.1~0.5 s~(-1)应变速率下的高温流变曲线、微观组织演变以及不同区域的硬度变化趋势。结果表明:合金在高温变形过程中,真应力-应变曲线呈现出单峰特征,应变速率的降低或温度的升高都会使合金的流动应力降低;热变形使组织由粗大O板条和原始的B2相混合组织演变为单一B2再结晶组织。造成该合金流变软化和组织演变的主要原因是B2组织发生了动态再结晶。再结晶区的硬度值最小可至350 HV,与动态再结晶有关。  相似文献   

7.
基于摩擦修正的TB8合金热压缩流变应力行为分析   总被引:2,自引:0,他引:2  
采用Gieeble-1500热模拟试验机对TB8(Ti-15Mo-2.7Nb-3Al-0.2Si)合金进行了等温热压缩变形试验,温度范围为750-1100℃,应变速率范围为0.01~1s-1.在热压缩过程中由于摩擦影响导致流变应力不能真实反映材料的高温变形行为.采取一种简便的方法对实验数据进行了摩擦修正,研究了TBS合金热变形流变应力行为,并对合金的变形机制进行了初步探讨.结果表明:热压缩过程中摩擦对于流动应力的影响十分显著,采取的修正方法降低了实验中摩擦引起的误差;TB8合金的热变形行为具有高度的变形温度和应变速率敏感性,随着变形温度的提高和应变速率的降低,真应力显著降低;动态回复和动态再结晶是TB8高温变形时主要软化机制.  相似文献   

8.
利用光学显微镜和扫描电镜,研究热处理对铸态Ti-43Al-4Nb-1.4W-0.6B-0.1Y合金及其在1 200℃锻造后的组织中β(B2)相偏析的影响。结果表明:在α+γ两相区保温适当时间,可减少铸态合金组织中的β(B2)相偏析,经1 250℃/6 h+AC(air cooling)热处理后,晶界处和片层内的β(B2)相偏析明显减少,但不能消除β(B2)相;经过热变形后,β(B2)相发生变形甚至被破碎,有利于β(B2)相在随后的热处理中消除;热处理后,合金中β(B2)相的含量与变形中的动态再结晶密切相关,高应变速率下β(B2)相动态再结晶不完全,在随后的热处理过程中,由于变形储能的作用更易消除β(B2)相。  相似文献   

9.
以元素粉末为原料,通过混料、冷等静压及真空烧结制备Ti-3Al-5Mo-4.5V合金,在应变速率为0.001,0.01,0.1和1s~(-1),变形温度为700,800,900和1 000℃的条件下对合金进行热压缩变形,通过建立热变形本构方程,并绘出热加工图,研究粉末冶金钛合金的热变形行为及热加工性能。结果表明,Ti-3Al-5Mo-4.5V合金在高应变速率下(700~800℃/0.01~1 s~(-1)和800~960℃/0.2~1 s~(-1))变形时发生失稳,失稳机制为局部流变和内部开裂。最佳变形区间为750~900℃/0.001 s~(-1),变形机制为动态再结晶。基于加工图,对Ti-3Al-5Mo-4.5V合金棒材进行高温轧制变形实验,变形量高达98.4%,变形后的合金组织均匀细小。  相似文献   

10.
采用扫描电子显微镜(SEM)/电子背散射衍射(EBSD)、透射电子显微镜(TEM)等技术,研究经二步等温锻造得到的Ti-44Al-4Nb-1.5Cr-0.5Mo-0.1B-0.1Y(原子分数)合金单向高温压缩变形行为,揭示该合金变形过程中的组织演变及其变形机理。研究结果表明,该合金中的α2相在等温锻造及随后的单向高温压缩过程中大部分转变为B2相和γ相;高温变形过程中γ相主要细化机理为动态再结晶,而B2相则为动态回复;孪生及其交互作用是重要的变形机理,孪晶界促进了非连续动态再结晶,从而有助于细化晶粒。  相似文献   

11.
利用X衍射分析(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、室温拉伸试验等手段,研究粉末冶金Ti-45Al-7Nb-0.3W(原子分数,%)合金包套轧制过程中的显微组织和力学性能的变化规律。结果表明:热等静压法态的Ti-45Al-7Nb-0.3W合金组织为近γ组织,主要由块状的γ相组成,同时包括少量的α2相及极少量的B2相。轧制后Ti Al合金板材为双态组织,B2相消失。随轧制变形量增加,合金板材强度增加,变形量为40%时,板材抗拉强度最大,达到955 MPa。继续增加变形量合金板材的力学性能有所降低。当变形量较小时,合金的塑性变形主要通过位错滑移和攀移来实现。随变形量增加,孪生和动态再结晶机制发挥作用。  相似文献   

12.
通过高温压缩模拟试验结果建立TiAl基合金的热加工图,结合扫描电镜、透射电镜等试验手段,研究铸造TiAl基合金在温度为1 000~1 150℃、应变速率为0.001~1 s 1范围内的热变形行为。结果表明:铸造TiAl基合金是温度、应变速率敏感材料,其流变应力随温度升高和应变速率降低而降低。铸造TiAl基合金的高温变形机制以层片晶团的扭折、弯曲及动态再结晶过程为主。在高温(1 150℃),低应变速率(≤0.01 s 1)下变形后,铸态组织中β相含量明显减少直至消除。在变形温度1 150℃、应变速率0.001 s 1下变形时,铸造TiAl基合金未发生超塑性变形;此时由于动态再结晶晶粒异常长大导致加工图上该区域功率耗散值未达到最大,而是有减小的趋势。  相似文献   

13.
The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B al-loy using gas atomization powders was systematically investigated and the processing map was obtained in the temperature range of 1323-1473 K and strain rate range of 0.001-0.5 s-1 .The calculated activa-tion energy in the above variational ranges of temperature and strain rate possesses a low activation energy value of approximately 365.6 kJ/mol based on the constitutive relationship models developed with the Ar-rhenius-type constitutive model respectively considering the strain rate and deformation temperature.The hot working flow behavior during the deformation process was analyzed combined with the microstructural evolution.Meanwhile, the processing maps during the deformation process were established based on the dynamic material model and Prasad instability criterion under different deformation conditions.Finally, the optimal hot processing window of this alloy corresponding to the wide temperature range of 1353-1453 K and the low strain rate of 0.001-0.1 s-1 was obtained.  相似文献   

14.
The hot deformation behavior of Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85 Nd alloy in β/quasi-β forging process was studied using isothermal compression tests over temperature range from 1040 ℃ to 1100 ℃ and strain rates form 0.001 s~(-1)to 70 s~(-1)The results show that the flow stress and microstructure are sensitive to thermomechanical parameters.The processing maps based on the dynamic materials model at strain of 0.3 and 0.7 were established.The optimum deformation thermomechanical parameters at a strain of 0.7 have two regions that exhibit the peak of power dissipation efficiency.One is the region of 1062-1100 ℃ and 10~(-3)-10~(-1.5)s~(-1); and another which represents dynamic recrystallization is 1040-1045 ℃ and 10~(-1.8)-10~(-0.9)s~(-1)The instable region is located where the strain rate is larger than 1 s~(-1)which corresponds to the mechanical instability.  相似文献   

15.
采用真空感应熔炼法制备了医用Ti-50. 7%Ni合金(原子数分数), 测试了铸态合金的成分、相变点、微观组织和硬度, 并采用Gleeble-3800热模拟实验机在变形温度750~950℃、应变速率0. 001~1 s-1, 应变量为0. 5的条件下对Ni-Ti合金进行高温压缩变形, 分析其流动应力变化规律, 建立了高温塑性变形本构关系和热加工图.结果表明: 当变形温度减小或应变速率增大时, Ni-Ti合金的流动应力会随之增大.应变速率为1 s-1时, 合金的真应力-真应变曲线呈现出锯齿状特征.根据热加工图, 获得了Ni-Ti合金的加工安全区和流变失稳区, 进而确定其合理的热变形温度范围为820~880℃, 真应变速率低于0. 1 s-1.从而为制定镍钛合金的锻造工艺参数提供理论和数据基础.   相似文献   

16.
采用Gleeble-1500型热模拟机在变形温度为360~480℃、应变速率为0.01~10 s-1、真应变为0~0.7的条件下,研究Mg-12Gd-3Y-0.6Zr合金二次挤压过程的热变形行为,获得其热变形工艺参数,并分析热变形后的显微组织。结果表明:合金的峰值应力随应变速率的增大而提高,随应变温度的升高而降低;在变形温度、应变速率相同的情况下,一次热模拟的峰值应力均大于二次热模拟(450℃,10 s~(-1)除外);合金二次挤压过程的流变应力可以采用含Zener-Hollomon参数的双曲正弦函数形式来描述;由于二次热模拟试样中位错及晶界运动增强,使二次热模拟的激活能(Q)、应力指数(n)均小于一次热模拟的相应参数,导致二次挤压较一次挤压容易发生再结晶。  相似文献   

17.
研究了不同熔炼条件下B、C元素对Ti-47Al-2Cr-2Nb合金的铸态组织的影响。研究结果表明:B、C元素的添加显著地细化了Tim基合金的组织片层,C元素的细化效果优于B元素。在所研究的精炼时间内,无论添加微量元素B还是C元素,精炼时间为30min时获得的铸锭组织中片层最细。  相似文献   

18.
利用紧凑拉伸试样通过预制疲劳裂纹研究近片层组织Ti-45Al-8Nb-0.2W-0.2B-0.1Y合金和全片层组织Ti-45Al-7Nb-0.2W-0.2Hf-0.3B-0.15C合金在750℃下的断裂韧性,并分析两种组织合金的断口形貌.结果表明,近片层组织和全片层组织高铌TiAl合金750℃时的断裂韧性分别为19.54和31.58 MPa·m1/2,且近片层组织疲劳裂纹开始萌生时的最大疲劳载荷明显低于全片层组织.断口分析表明近片层组织中裂纹主要在等轴γ晶中萌生,裂纹扩展方式包括沿γ晶、穿γ晶及沿片层、穿片层;全片层组织中裂纹主要在垂直于加载方向的片层间萌生,裂纹以沿片层与穿片层的混合方式进行扩展且伴有二次裂纹的萌生.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号