首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
广西某有色金属冶炼企业产铜阳极泥,在回收贵金属时产生的碲碱渣含碲量高达32%,现有工艺碲回收率低。针对在阳极泥熔炼生产过程中产出的碲碱渣开展湿法浸出试验,采用水浸—H2SO4中和—HONH3Cl沉硒—Na2SO3还原工艺处理碲碱渣,考察了水浸时间、液固比、温度对碲浸出效率的影响,同时探究盐酸羟胺沉硒温度、时间、盐酸羟胺用量对硒分离效果的影响。结果表明:水浸时间1 h、液固比4、温度55 ℃时,碲浸出效率达到最佳;盐酸羟胺沉硒温度80 ℃、沉硒时间2 h、盐酸羟胺为理论用量的3倍时,沉硒效果达到最佳,其分离率>99.99%,回收碲粉纯度高达99%以上。该工艺可以有效地分离硒回收碲,具有过程简单、生产环境安全、成本低,高效率的特点,具有产业化前景。  相似文献   

2.
从碱渣中提取碲的工艺研究   总被引:3,自引:0,他引:3  
碱渣是从铅阳极泥中提取贵金属过程中产出的中间物料,其中富集了大量的碲,碱渣中碲主要以亚碲酸钠形态存在.从碱渣的组成和性质出发,利用亚碲酸钠易溶于水、pH值处于中性附近时可转化为二氧化碲的特点,采取碱性湿法冶金技术原理提取碲,其基本路线采用碱渣破碎、球磨、浸出、净化、中和、煅烧、碱溶、电积来得到纯碲.重点研究了浸出时NaOH浓度、浸出时间对碲浸出率的影响,Na2S和CaCl2对Cu,Pb和Si杂质的去除效果,中和沉碲的最佳pH值,煅烧除Se的效果,电积电流密度对电积碲纯度的影响.试验表明,浸出时NaOH最佳浓度为浓度25 g·L-1,最佳浸出时间为4 h,用Na2s,CaCl2除去浸出液中的杂质Cu2+,pb2+和SiO2可以取得理想效果,中和沉碲的最佳pH值为5.0~6.0,最理想的电流密度为50~60 A·m-2.通过对提取碲各阶段试验的数据分析,提出各工艺阶段的控制关键,证实所采用的工艺流程可以从碱渣中成功提取纯碲.  相似文献   

3.
大冶稀贵车间从沉金后液中回收碲,工艺流程长,生产成本高,碲直收率仅有38.68%,公司欲改进此工艺。由于沉金后液中的碲有一部分是正六价形态存在,而正六价碲易溶于热水,不溶于碱液,正四价碲溶于碱液,基于此,本文设计了还原沉碲-碱浸还原渣-碱浸液除杂-中和沉碲工艺路线,并进行了调pH值Na_2SO_3还原沉碲和直接Na_2SO_3还原沉碲两类试验,实验结果表明:沉金后液调pH至1.9时,沉碲效果最好,碲浸出率76.9%,产品中TeO_2含量64.6%,碲直收率达到54.95%; pH调整过高,会有正六价碲析出,降低碲回收率; pH调整过低,会有单质碲析出,导致碲的碱浸率降低;贵金属Pt、Pd分散损失很少,在碱浸渣中得到很好的富集;低的碱浓度有利于碲的浸出;提高NaOH浓度,碱浸液中的杂质含量显著升高; Na_2S、CaCl_2能较好的除去碱浸液中重金属杂质。该试验工艺不仅缩短了碲的回收工艺流程,降低生产成本,而且可以提高碲的直收率。  相似文献   

4.
为综合回收锌冶炼烟尘及电解废液中的有价金属,本研究进行了利用锌电解废液浸出锌冶炼烟尘试验,通过一段浸出、碳酸钠中和沉锌及氢氧化钠中和沉镁等工序获得了沉锌产品和沉镁产品,通过两段浸出、萃取反萃、中和沉铟等工序获得了富铟渣及副产物铅银渣。试验最佳工艺条件:一段浸出为液固比4∶1,浸出温度80℃,浸出时间75 min,在此条件下,锌浸出率可达78.69%,铟浸出率仅为8.4%;锌镁分离最佳终点pH值区间为6.86~7.80;二段浸出最佳工艺条件为终点pH值1.08,液固比3∶1,浸出温度75℃,浸出时间10 h,在此条件下,铟浸出率可达86.84%。该研究可为炼锌厂开路除杂及综合回收有价金属提供新思路。  相似文献   

5.
研究了以Na_2SO_3预还原,Na_2S除铅、铜,调pH水解法从铜阳极泥分铜渣超声强化氧化碱浸液中回收碲。结果表明:在Na_2SO_3用量为理论量的1.0倍、还原时间9 min、还原温度70℃条件下,碲还原率为92.27%;在Na_2S添加量为理论量的1.0倍、反应时间10 min、温度60℃条件下,还原液中Pb~(2+)、Cu~(2+)脱除率分别为86.8%、95.7%;除杂液调整pH为4.0左右,在反应时间10 min、反应温度90℃条件下,碲水解为TeO_2,水解率达98.44%,所得TeO_2粉末纯度为89.69%。  相似文献   

6.
国外动态     
据《第4届国际硒和碲应用研讨会论文集》的资料,菲律宾国际回收公司用二次原料每月生产TeO_2 8t、Se 6—10t。其回收碲和硒的工艺流程大致如下;二次原料含有近30%Te和大量Fe及SiO_2。用水将原料调成浆,再用浓度200g/l的HCl浸出。用压滤机过滤矿浆。原料中92—94%的Te和一部分Fe进入澄清液中。加入NaOH,使pH达到2.5,再沉淀出被Fe污染的FeO_2。用NaOH浸出氧化物和加入Na_2S、CaCl_2和活性炭,清除溶液中的杂质。加入化学纯H_2SO_4,把pH降低到4.5,在90—95℃下沉淀高纯TeO_2。经过洗涤、澄清洗涤水和离心脱水后,用电炉烘干氧化物。成品碲的总回收率为88—91%。  相似文献   

7.
采用氯酸钠+硫酸浸铜、氢氧化钠浸碲、中和沉碲的方法从碲化亚铜渣中制取二氧化碲。在氯酸钠∶碲化亚铜渣=0.5、硫酸70g/L、反应温度80℃、液固比5∶1、反应时间2h的条件下,铜和碲的浸出率分别为99.33%、10.58%。酸浸渣在反应温度90℃、NaOH 100g/L、液固比5∶1、反应时间2h的条件下进行碱性浸出,碲浸出率为99.13%。利用浓硫酸调节碱浸液pH至5.5,碲沉淀率为100%,沉淀产物为TeO2,碲含量为75.76%。  相似文献   

8.
以铜阳极泥分铜后液高效还原所得铂钯精矿为研究对象,采用常压碱浸工艺高效分离As和Te等杂质,碱浸液用H2SO4中和沉碲、实现As和Te的高效分离。试验考察了H2O2用量、NaOH浓度、液固比、反应时间和温度等参数对As和Te浸出率的影响,及碱浸液中和pH值和反应时间对As和Te分离效果的影响。结果表明:在NaOH浓度2.5 mol·L-1、液固比5:1、不添加H2O2常温搅拌浸出1 h优化条件下,碱浸渣率为41.53%,Te和As的浸出率分别达到97.46%和99.17%;碱浸液采用H2SO4中和至pH=5后反应1.5 h,沉碲后液中Te含量仅为0.1416 g·L-1,所得TeO2沉淀中Te含量为71.77%、As含量为0.919%,粗TeO2沉淀经一次提纯后Te和As含量分别为77.55%和0.050%,X射线衍射(XRD...  相似文献   

9.
目前处理除含碲外尚含有較高硒(0.2%Se以上)的苏打渣时,一般应用如下方法:水浸出、中和、净化及碱性溶液电解得到純碲。从中和废液中順便回收硒。但是,所有按这一流程工作的工厂都未能达到較高的回收率,其主要原因是: (1)苏打渣中可溶于水的以亚碲酸鈉(Na_2TeO_3)状态存在的碲,一般波动在75~90%。其余以难溶于水和NaOH溶液的碲酸鈉(Na_2TeO_4)状态存在,所以只用水或NaOH溶液浸出不足以将碲全部  相似文献   

10.
以某公司复杂碲铜物料为原料,采用双氧水氧化浸出-草酸沉铜-还原碲工艺回收复杂碲铜物料中的碲。研究了浸出温度、H2SO4浓度、双氧水的加入量、液固比、浸出时间对碲浸出效果的影响,草酸钠过量系数和反应温度对沉铜效果的影响以及亚硫酸钠用量对还原效果的影响。试验结果表明:在H2SO4浓度110 g·L-1、双氧水的加入量为理论量的1.2倍、液固比6∶1、浸出温度80~85℃、浸出时间4 h时,碲、铜浸出效果最好;在草酸钠为理论量的1.2倍、反应温度65~75℃时,沉铜效果最好;在亚硫酸钠用量为理论量的1.6倍时还原沉碲的效果最好。碲以碲粉的形式回收,铜以草酸铜的形式回收,碲、铜的回收率分别为98.5%和98%。  相似文献   

11.
巢冲 《铜业工程》2021,(3):54-57
优化酸泥浸铅渣中铋的回收工艺,采用硫酸+NaCl为浸出介质,分别研究了各个浸出过程工艺参数的影响,确定了氯盐酸浸最佳工艺参数为:浸出酸度为110 g/L,氯离子浓度为130 g/L,液固比为4∶1,反应温度为85℃,反应时间为2h;中和沉铋最佳工艺参数:pH值为2.5,温度为60℃,时间为1h,可实现酸泥浸铅渣中铋的有效浸出和富集。  相似文献   

12.
研究了用钛白废酸从硫酸渣中浸出铜,再用硫化钠从浸出液中沉淀铜,考察了废酸质量浓度、液固体积质量比、搅拌时间对铜浸出率的影响。结果表明:在废酸质量浓度123 g/L、液固体积质量比3/1、温度30℃条件下搅拌浸出3 h,铜浸出率达82.1%;浸出矿浆用石灰乳中和至pH=4.0,液固分离后用硫化钠沉淀铜,铜回收率为81.45%,沉淀物中铜质量分数为34.5%;沉铜后的废水用石灰中和后循环使用。此工艺可实现以废治废,回收有价金属。  相似文献   

13.
为探索铜阳极泥流程短、操作简便、损耗低、回收率高的碲回收工艺,本文对其处理过程中的四种含碲物料进行了直接或间接的碱浸试验,并对最终较优碱浸工艺的产物进行了除杂试验,得到如下结论:对蒸硒渣进行直接或间接碱浸试验,碲的浸出率为1.26%,蒸硒渣中正四价碲含量很低;对沉金后液中和渣进行碱浸试验,碲的浸出率为1.2%,沉金后液中的碲主要是正六价碲;对铂钯精矿直接或间接碱浸试验,碲的浸出率不超20%,铂钯精矿中有少部分的正四价碲,主要是单质碲、正六价碲;对一次还原后液中和渣进行直接碱浸试验,碲的浸出率达到98.69%,中和渣中碲的形态主要是正四价碲;采用Na_2S对碱浸液中的重金属除杂,效果较好。  相似文献   

14.
对碲铜复杂原料中碲贵金属采用了加压浸出工艺处理,研究了游离NaOH浓度、固液比、浸出时间、浸出压力、浸出温度对浸出效果的影响。研究结果表明,游离NaOH浓度为40g.L-1、固液比为1∶7、浸出时间为6h、浸出压力为0.9MPa、浸出温度为120℃时,碲浸出效果最好。贵金属碲以TeO2形态回收,试验结果碲回收率≥95%。  相似文献   

15.
考察氢氧化钠浓度、液固比、温度、浸出时间对文丘里泥中碲、铅、硒浸出率的影响。结果表明,在氢氧化钠浓度100g/L、液固比5、温度60℃、浸出时间1h的优化条件下,碲、铅、硒浸出率分别为94.7%、39.9%、20.5%。采用两级浸出方式可有效抑制铅的浸出,二级浸出液经硫化除铅—酸化沉碲,可以得到TeO2含量大于98.5%的二氧化碲。  相似文献   

16.
大冶有色冶炼厂稀贵车间积压40 t综合渣(湿重),含碲约7 t,还含有少量贱金属和极少量贵金属,为达到工业化处理的目标,本文借鉴从沉金后液中回收碲的工艺路线思路进行探索性试验验证,得到以下结论。采用盐酸-氯酸钠氯化-水解中和法,综合渣中碲的浸出率可以达到99%以上,沉淀率达到77%以上,碲的直收率达到77%以上;采用沉金后液-氯酸钠氯化-水解中和-锌粉置换法,综合渣中碲的浸出率可以达到94%以上,沉淀率达到75%以上,碲的直收率达到71%以上。对比两种方法,沉金后液-氯酸钠氯化法对综合渣中碲的回收更加贴合实际生产应用。工业试验验证,采用沉金后液-氯酸钠氯化-沉铂钯工艺路线处理综合渣得到的铂钯精矿含碲达到29%以上,可回收40 t碲,实现利润约165.64万元。  相似文献   

17.
研究了从碲化铜物料中提取精碲的工艺,详细考察了碲浸出过程中氢氧化钠浓度、浸出时液固比、浸出温度和浸出时间对碲浸出率的影响。结果表明,在碲浸出时控制氢氧化钠浓度为120 g/L、浸出温度为80℃、浸出液固比为3∶1、浸出时间3h,碲浸出率可达到70%左右。  相似文献   

18.
针对高含镍铜阳极泥,采用直接添加氢氧化钠焙烧-碱浸-酸浸流程进行Se、Te、Cu的脱除试验研究,并对过程的反应机理进行了分析。研究发现,加碱氧化焙烧过程中硒化物和碲化物中的Cu变成Cu O和Cu3Te O6;Se、Te分别转变成在碱性溶液中易溶的Na2Se O3和不溶的Ag2Te O3、Cu3Te O6,为Se、Te、Cu的选择性脱除奠定了基础。试验结果表明,最佳焙烧-碱浸的条件为:Na OH剂量为阳极泥的10%,焙烧时间1.5h,焙烧温度500℃。碱浸时间1.0h、Na OH浓度20g/L、碱浸温度80℃、液固比5∶1。在此条件下Se的浸出率为95.50%,碱浸渣中Se的含量从3.93%下降到0.23%。碱浸渣酸浸除铜碲的最佳条件为:H2SO4浓度为90g/L、酸浸温度70℃、酸浸时间1.0h、液固比20∶1;在此条件下,Cu、Te的脱除率分别为96.18%、98.48%。  相似文献   

19.
本文采用"硫酸浸出—水解沉淀—结晶"工艺从铝灰中回收硫酸。综合考察了浸出过程中浸出温度、搅拌强度、浸出时间、固液比、硫酸浓度等因素对其浸出率的影响。实验结果表明,该工艺的最佳浸出参数为浸出剂浓度为15%的硫酸、浸出温度为40℃、浸出时间为90min、浸出搅拌强度为300r/min、固液比为1:10,重复试验铝灰中铝的最佳浸出率可达到90.12%。水解沉淀过程中加入过量的(15ml)5%过氧化氢,以氧化其中的杂质,并严格控制终点pH值为4.3。元素分析和X射线衍射分析(XRD)结果表明,产品硫酸铝中产物为Al_2(SO_4)_3?18H_2O。  相似文献   

20.
二氧化碲盐酸浸出-二氧化硫还原是生产碲的新工艺,该工艺流程短、设备配置简单、回收率高,具有较好的应用前景。本文考察该工艺中浸出温度、浸出时间、浸出液固比、预还原时间、还原时间、还原温度等参数对碲回收率的影响,并创新性地提出铁粉深度还原降低后液含碲措施,以提升碲还原率及回收率。主要得到以下结论:在浸出温度65℃、浸出时间60 min、浸出液固比3∶1、预还原时间5 min、还原时间6 h、还原温度70℃的条件下,碲的浸出率为95.5%,还原率为91.5%,碲粉经洗涤浇铸后可获得满足Te9995牌号标准的精碲。通过铁粉深度还原含碲后液,可将碲的还原率进一步提升至96%,流程碲回收率达91.68%。相比于电积工艺,新工艺可缩短生产周期95%,实现了碲产品高效产出与经济效益提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号