首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
为降低炼钢工序成本,实现转炉渣料成本最优,进行了转炉低成本造渣技术的研究与试验。以"留渣+双渣"为基础冶炼模式,确定了石灰石、铁矿石在转炉少渣冶炼中的使用方案,使石灰消耗由42.4 kg/t降低至26.5kg/t,铁矿石用量由0 kg/t增加至23.5 kg/t,转炉渣料成本降低4.8元/吨钢,金属料成本降低7.05元/吨钢。  相似文献   

2.
《特殊钢》2017,(4)
石横特钢150 t转炉炼钢应用生白云石代替部分石灰和镁球进行少渣冶炼的工艺,采用优化的"溅渣+调渣"工艺改善了留渣的安全性;通过采用合理的造渣制度、吹炼制度、加入适量炉渣发泡剂、控制倒渣点,使得脱磷率约60%,排渣率约50%,有效保证了转炉的冶炼终点,各项指标得到了优化,石灰消耗从46.7 kg/t降低到30.2 kg/t;轻烧镁球消耗从13.3 kg/t降低到8.7 kg/t;氧气消耗为47.7 m~3/t;钢铁料消耗从1 075.3 kg/t降低到1 072.1 kg/t,实现安全、低成本少渣冶炼。  相似文献   

3.
天钢为降低转炉冶炼成本,对转炉留渣单渣炼钢工艺进行研究。通过理论测算和针对性试验,采用留渣单渣炼钢新工艺后,与原不留渣单渣工艺相比,降低了辅料消耗16.25 kg/t钢,钢铁料消耗降低了3.18 kg/t钢,脱磷率从85%提高到88%。该工艺能够安全可靠地应用于Q235、20等普通钢种的冶炼生产,显著降低了炼钢成本,取得了较好的经济效益。  相似文献   

4.
为了有效解决低碳钢冶炼中存在的炉衬侵蚀严重和铁损高等技术难题,河北敬业集团炼钢北区对现有转炉护炉工艺进行了改进,新工艺实现了终渣改质、留渣操作和渣补大面相结合的有效护炉。转炉护炉工艺改进后,取得了转炉冶炼5 000炉不补炉、钢铁料消耗降低4 kg/t钢的良好效果。  相似文献   

5.
通过工业试验对迁钢210 t复吹转炉冶炼过程钢样成分、渣样成分和炉渣岩相进行分析,研究了两种造渣工艺(方案A和方案B)的成渣过程及脱磷状况。对比两种造渣工艺的工业试验效果表明高枪位的造渣工艺方案B优于方案A;转炉冶炼前期化渣速度快,冶炼前、中期脱磷率高12.6%;高熔点矿相少,炉渣流动性较好;成渣路线更加平稳;方案B较方案A石灰消耗少11.5 kg/t,Lp高5.42,转炉平均脱磷率高2.7%。  相似文献   

6.
《炼钢》2015,(4)
通过脱磷热力学计算与物料平衡计算得出转炉脱磷所需总渣量,并结合转炉氧化脱磷三要素,调整少渣冶炼工艺参数及措施,实施少渣冶炼。工业试验表明,在保证成品钢种磷含量稳定的前提下,冶炼总渣量降低了11.46 kg/t,氧气消耗降低了417 m3/炉,煤气回收总量提高了57 m3/炉,钢铁料消耗降低2.08 kg/t。  相似文献   

7.
通过研究转炉留渣双渣法冶炼工艺,提高了冶炼过程深脱磷效果;通过优化氧枪参数,开发与优化自动炼钢模型,解决冶炼低磷钢种时终点补吹率高、钢水过氧化问题。实现了转炉冶炼低磷高端品种钢的稳定生产,磷含量稳定控制在0.001 2%以内,各类消耗不断降低,其中石灰消耗控制在38 kg/t左右,转炉总渣量控制在85 kg/t左右,终点磷合格率达到了98%以上。  相似文献   

8.
对马钢转炉冶炼深脱硫铁水的工艺效果进行了阐述。采用深脱硫铁水冶炼,虽冷料比下降,但转炉可少渣冶炼、实现终点w(s)≤0.006%,C-T命中率提高,终点钢水活度氧含量稳定在556×10~(-6)左右,吹损喷溅下降,石灰等散状料和钢铁料消耗控制在72kg/t钢及1 092kg/t钢以下,解决了转炉脱硫需采用的高温、高碱度、大渣量和多次倒炉操作。  相似文献   

9.
理论计算和工业试验效果证明,安钢100t转炉采用出钢过程“渣洗”脱硫工艺,具有较好的脱硫效果,在进一步优化工艺参数后,可以有效降低品种钢在冶炼过程中的生产成本。  相似文献   

10.
阐述了脱磷炉相关工艺研究以及与常规转炉冶炼时的主要技术指标对比情况。主要工艺有少渣高效冶炼工艺、底吹系统优化,底吹深脱磷工艺、底吹可视化工艺,转炉终点静止脱碳工艺。技术指标对比分析结果显示:脱磷炉终点平均磷含量为O.014%,常规转炉终点平均磷含量为0.019%,脱磷炉脱磷效果明显;脱磷炉石灰消耗控制在41.45kg/t,常规转炉石灰消耗控制在53.27kg/t;脱磷炉终点渣中平均TFe含量为11.73%,常规转炉终点渣中平均TFe含量为14.38%,脱磷炉金属收得率高;脱磷炉平均终点钢水残锰0.102%,常规转炉平均出钢残锰0.075%,脱磷炉合金消耗少;脱磷炉平均喷溅渣量为3.93kg/t,常规转炉平均喷溅渣量为13.23kg/t,脱磷炉过程控制平稳,金属损耗少;脱磷炉冶炼钢水终点碳氧积为0.002129,常规转炉冶炼钢水终点平均碳氧积为0.002659。脱磷炉控制水平较好。  相似文献   

11.
为实现“全三脱”工艺少渣冶炼,进一步降低辅料消耗,首钢京唐开发了热态脱硫渣、液态脱碳渣及铸余渣钢直接返回利用工艺。对热态渣、钢的可回收性进行了分析,并通过工业试验验证了工艺的应用效果。结果表明,回收利用5 t的脱硫渣,脱硫剂消耗可降低30%~40%,铁水温降相对减少10~15 ℃,总渣量减少30%~40%,同时可降低铁损,减少对环境的污染;对于脱碳渣,每炉回收热态渣20 t,可节约石灰3.2 t,若铁水硅质量分数小于0.15%,脱磷炉可不加石灰,钢铁料消耗相应减少2.4 kg/t,并且可取消萤石及轻烧的使用,可实现脱磷炉零辅料消耗;对于钢包铸余,通过控制高炉出铁量,将精炼工序RH/LF/CAS产生的热态精炼渣及钢包铸余兑入半钢包,连同半钢一起兑入脱碳炉中进行冶炼,铸余钢回包次数可达到6~8次,实现液态铸余直接回收。  相似文献   

12.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

13.
摘要:磷在钢中作为一种有害元素会危害钢材的塑性、韧性和可焊性等性能,如何高效地降低钢中的磷含量一直成为国内外钢铁企业的研究重点。总结并分析了转炉冶炼中造渣料、氧枪控制、底吹控制、冶炼温度和转炉渣成分对脱磷的影响,并以此为基础,对转炉脱磷技术的发展进行了展望,为钢铁企业的脱磷工艺提供理论依据和技术参考。  相似文献   

14.
孟华栋  杨勇  姚同路 《中国冶金》2006,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

15.
为优化转炉冶炼工艺,进行了180 t顶底复吹转炉的少渣低温高效冶炼试验,实现前期渣碱度平均为1.91,前期脱磷率平均为56.25%,后期渣碱度平均为3.02,终点脱磷率平均大于90%,过程石灰、白云石消耗分别降低30%、20%以上。得出冶炼前期碱度为1.5~2.0,熔池温度为1350~1400℃更有利于铁水磷的脱除;随终点出钢温度与终渣碱度的提高,终点出钢磷质量分数增加;分析前期的快速化渣有利于铁水磷更多地脱除到前期渣中;冶炼后期的少渣操作容易造成“返干”,是影响后期冶炼效果的关键因素。  相似文献   

16.
邯钢在炼钢系统推行转炉少渣冶炼工艺,在冶炼过程中充分利用高碱度的终渣,在吹炼前期适当时机倒出脱磷渣再进行二次造渣,从而实现降低渣料和钢铁料消耗,降低生产成本的目的。应用该工艺后降低石灰消耗29.3%,转炉渣量减少32.8%,钢铁料消耗降低5 kg/t,取得了良好的经济效益。  相似文献   

17.
孟华栋  杨勇  姚同路 《中国冶金》2022,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

18.
为了研究脱碳渣在脱磷期的重新利用,基于多功能转炉炼钢法进行连续循环冶炼实验.实验发现:脱磷阶段渣中较低的Fe O含量、吹炼5 min左右,[C]≥2.8%的条件下,可实现转炉熔池内铁液[P]≤0.025%的脱磷效果,并对低(Fe O)含量炉渣的脱磷可行性进行热力学计算;随着循环的进行,石灰加入量逐渐降低,由65 kg·t-1降低至31 kg·t-1,转炉冶炼终点钢水[P]量由0.018%降低至0.005%,2~4炉后达到平衡状态;在循环过程中,脱磷阶段结束倒出炉渣60~80 kg·t-1,整个循环结束一次性倒出剩余全部炉渣120~130 kg·t-1,平均渣量为83 kg·t-1左右,较普通工艺的120 kg·t-1渣量有大幅度减少.   相似文献   

19.
The dephosphorization process test was carried out in a domestic converter steel plant by using the “remaining slag double slag” process technology. The results show that with the increasing of dephosphorization rate in early stage of converter, the end point dephosphorization rate increases continuously. The silicon content in molten iron has the greatest influence on the dephosphorization rate in early stage. According to the composition of molten iron, properly reducing the oxygen supply intensity, reducing the gas solid oxygen ratio,adding an appropriate amount of lime and sinter in early stage of smelting are conducive to the improvement of dephosphorization rate in early stage. Adding lime of 4-8kg per ton of molten steel in the first turn down stage does not affect the tapping temperature, which can improve the dephosphorization rate in the first turn down to end point stage and the end point dephosphorization rate at the same time. From the control effect of the end point, the alkalinity of the end point slag should not be less than 3.0, the mass fraction of FeO in the slag should be 16%-20%, and the end point tapping temperature should be appropriately reduced to 1610-1630℃, which is conducive to the improvement of the end point dephosphorization rate. By strengthening of the stirring of molten pool and promoting the balance of the steel slag reaction, it is conducive to improvement of the end point phosphorus distribution ratio, so as to further improve the end point dephosphorization rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号