首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
钢和铝异温轧制复合机理的研究   总被引:16,自引:0,他引:16  
于九明  于长生 《钢铁》1995,30(8):44-47,34
研究异温轧制复合工艺制度对钢和铝复合板初结合强度的影响,结果表明,轧制变形程度和铝层加热温度都是影响复合板初结合强度的主要因素,利用扫描电镜观察分析复合界面形貌,并对微区成分分析证明,异温轧制复合有不同于室温固相复合的结合机制。  相似文献   

2.
采用异步轧制复合工艺制备了铜/铝双金属复合板,分析了轧制工艺参数对复合板变形行为的影响,结合轧制变形区金属受力状态探讨了复合过程中的金属变形及流动规律.结果表明:异步轧制变形区内界面摩擦剪切作用直接影响母材的受力状态,共同变形区内双金属间的搓轧作用对金属流动及结合效果影响最大.异步速比越大,硬质金属变形越大.总压下率增大时,组元金属压下率均呈正比关系增加,且软、硬两种金属的压下率差值越来越小.  相似文献   

3.
采用室温固相复合技术制备Ag/Cu复合材料。利用拉力试验仪、扫描电镜、能谱仪等设备对Ag/Cu复合材料的剥离力、界面形貌和成分进行分析。结果表明,Ag/Cu复合材料随着轧制变形量提高,界面的剥离力逐渐增大,在轧制变形量75%时结合牢固。复合轧制结合方式符合裂纹机制。  相似文献   

4.
冷轧复合材料的复合工艺实验   总被引:1,自引:0,他引:1  
 进行了钢 铜、钢 铝冷轧复合实验,即表面处理+复合轧制+轧后热处理。结果表明,复合轧制前,必须对基材和复合材料进行表面清洗,基材钢需进行表面毛化处理,要求表面粗糙度为Rz=81~101 μm,较薄的复合材料如铜、铝可不经毛化处理直接复合轧制。钢 铝无张力复合轧制所需总相对压下量为40%≤ε≤60%,钢 铜无张力复合轧制所需的总相对压下量为ε≥70%。应严格控制热处理的退火温度和保温时间,保温时间过长,会削弱复合面的强度;钢 铝退火温度控制在320 ℃左右,保温时间约1 h;钢 铜退火温度在550~600 ℃范围内,保温时间约15 h。研究认为复合轧制过程中,带材之间的相对跑偏、厚度比控制是亟待解决的问题。  相似文献   

5.
1 绪言 石油精炼设备的高温高压氢反应容器,过去采用把奥氏体不锈钢堆焊在板厚80~200mmCr—Mo钢上的堆焊复合钢。由于操作条件缘故,在母材与复合材界面有时产生因氢聚积引起的剥离裂纹。近年来随着轧制复合钢技术的发展及轧机大型化,就能用轧制复合钢来取代堆焊复合钢,这从经济上说是很有价值的。  相似文献   

6.
李立新 《江苏冶金》1996,24(4):15-16,26
本文研究了异步轧结铝铜双金属复合材料时轧制力矩的分配特性  相似文献   

7.
多层喷射沉积铝/钢双金属板的轧制   总被引:1,自引:0,他引:1  
用多层喷射沉积技术制备铝/钢双金属板坯,在不同热轧工艺条件下进行了轧制。不同的热轧工艺材料有不同的性能,不同的热轧工艺对双金属的铝/钢界面结合强度有着显著的影响。本文分析了工艺参数对界面结合的影响,并提出了优化的工艺参数。  相似文献   

8.
釆用“电子束真空焊接制坯+热轧”的工艺在钢厂热连轧生产线上进行了“316L不锈钢+Q345C碳 钢”的单面不锈钢复合板热轧生产。采用非对称制坯及异步轧制的手段生产出了高品质单面不锈钢复合板,所生 产的不锈钢复合板界面剪切强度大于320 MPa、屈服强度大于370 MPa、抗拉强度大于520 MPa、断后伸长率大于 30%,各项指标均达到GB/T8165-2008的要求。不锈钢层和碳钢层结合度良好,复合界面平直,无明显缺陷,不锈 钢与碳钢之间实现了良好的冶金结合,结合率达100% 。  相似文献   

9.
铜/钢扩散复合界面分析   总被引:2,自引:0,他引:2  
用扫描电镜观察、能谱分析、电子探针和显微硬度测定等方法对铜/钢双金属棒扩散复合界面附近的组织、成分和硬度进行了分析。结果表明,铜/钢双金属通过扩散复合可使界面实现良好的冶金结合。随扩散温度的提高,两种金属的结合强度大大提高;随扩散时间的延长,结合强度先增加后趋于稳定,与一定的扩散温度相对应。扩散退火过程中,界面两侧的原子发生了互扩散。从扫描电镜和电子探针结果中可以确定铜/钢界面附近的氧化物为Fe2O3。  相似文献   

10.
采用金相显微镜(OM)、扫描电镜(SEM)和能谱分析(EDS)等研究方法分别对莱钢F550船板钢300 mm厚铸坯、50 mm厚轧板和20 mm厚轧板的上表面、侧面和横截面夹杂物的种类、尺寸、成分及形貌等特征进行了分析.结果表明,F550船板钢中的夹杂物在轧制前后种类和尺寸没有明显变化,轧后大于5μm的夹杂物所占比例略有升高;船板钢中主要夹杂物有单相氧化铝和氧化物-硫化物复合夹杂;试样不同面上复合夹杂物的形貌特征各异,在轧制过程中试样各个面上复合夹杂物形貌发生明显变化,这与夹杂物的塑性和轧制受力情况有关.  相似文献   

11.
4不锈钢-碳钢复合板多道次小变形轧制温度场的数值模拟   总被引:1,自引:0,他引:1  
基于弹塑性热力耦合有限元法研究了72mm Q235钢基板和14mm 304不锈钢复板11道次变形至12mm复合板的热轧过程,并应用有限元MARC软件二次开发技术建立了温度场模型。模拟结果表明,变形区内,复合板表面温度持续下降,界面温度略有升高;变形区外,表面温度有所回升;随轧制过程进行,轧件高度方向温度梯度逐渐减小;界面处温度呈“S”形,变形区温度变化显著,且随轧制速度提高,升温明显。  相似文献   

12.
相对于爆炸复合法和爆炸轧制复合法而言,采用真空-轧制生产钛钢复合板的方法更加适应大规模生产需要.本实验将TA1钛材置于两块Q345钢材中间组成组合坯,组合坯经抽真空至0.1 Pa后密封,在840~930℃下进行加热轧制,对轧制复合样进行力学性能检测,并利用扫描电镜、X射线衍射分析及显微硬度仪对组织与界面结合度进行分析.在该实验条件下,钛钢复合板剪切强度在159 MPa以上,达到了1类复合板标准要求,870℃轧制复合板性能较优.900和930℃轧制时,钛发生相变,同时在界面处生成了较多的金属问化合物,钛和钢的变形抗力相差过大和变形不协调导致界面附近的内应力变大,这些因素都降低了界面的剪切强度.840℃轧制后剪切强度低的原因是由于温度过低影响了界面附近元素的扩散.   相似文献   

13.
不锈钢-碳钢复合板多道次小变形轧制温度场的数值模拟   总被引:3,自引:1,他引:2  
庞玉华  吴成  严平 《特殊钢》2006,27(2):9-12
基于弹塑性热力耦合有限元法研究了72 mm Q235钢基板和14 mm 304不锈钢复板11道次变形至12 mm复合板的热轧过程,并应用有限元MARC软件二次开发技术建立了温度场模型。模拟结果表明,变形区内,复合板表面温度持续下降,界面温度略有升高;变形区外,表面温度有所回升;随轧制过程进行,轧件高度方向温度梯度逐渐减小;界面处温度呈“S”形,变形区温度变化显著,且随轧制速度提高,升温明显。  相似文献   

14.
钛-铝复合板界面组织及其对加工性能的影响   总被引:1,自引:0,他引:1  
使用金相显微镜(OM)、扫描电镜(SEM)、电子探针(EPMA)和显微硬度计(MHTM)对爆炸焊接钛-铝复合板的爆炸态、退火态、轧制态界面进行了研究.结果表明:结合面呈波状结合,距爆炸点越远,界面波的波长和波幅越大;周期性轧制裂纹的分布和界面波波形的分布吻合;复合板的界面分布着周期性中间相,中同相由TiAl和TiAl<,2>组成;在450℃×10 h,490℃×3 h的退火条件下,界面钛铝原子相互扩散不明显,更不会生产中间相.由于爆炸硬化和爆炸热效应的共同作用,界面附近钛板和铝板硬度分布规律不同.周期性轧制裂纹是变形时界面的附加拉应力引起的,裂纹源在钛层的最薄处,界面波形参数过大是钛板面出现轧制裂纹的主要原因.爆炸复合时应严格控制波形参数和中间相.  相似文献   

15.
真空热轧法制备不锈钢复合板组织和力学性能   总被引:2,自引:0,他引:2  
 为了研究轧制温度对复合板界面结合强度的影响,采用真空热轧法制备了不锈钢复合板,利用OM、EPMA观察分析了不锈钢复合板界面组织和合金元素扩散。结果表明,碳钢中碳、铁元素向不锈钢扩散,不锈钢中铬、镍等元素向碳钢扩散,界面处出现Si-Mn-O三元化合物,合金元素扩散随轧制温度的升高而趋于严重。远离界面碳钢的组织为铁素体和珠光体组织,靠近界面碳钢的组织为铁素体组织。碳钢至界面处硬度先减小后升高,界面至不锈钢内部硬度先升高后下降,距界面约40 μm碳钢侧的维氏硬度值最低约为121.8HV,距界面约20 μm不锈钢侧的维氏硬度值最高约为245.5HV。从1 100到1 300 ℃,剪切强度随轧制温度的升高而升高,1 300 ℃轧制获得的界面剪切强度为463 MPa,远远超过基体的剪切强度。  相似文献   

16.
反向凝固连铸碳素钢带中复合层的凝固生长规律   总被引:9,自引:0,他引:9  
在实验室条件下,用市售碳素钢板作为母带,用08Al低碳钢作为复合层材料,对反向凝固连铸薄带生产过程中复合层在母带表面的凝固生长规律进行了研究,研究结果表明,母带在钢水中的浸渍时间、母带厚度和钢水过热度对复合层厚度有显影响,而且这些工艺参数之间存在交互作的浸渍时间、母带厚度和钢水过热度对复合层厚度有显影响,而且这些工艺参数之存在交互作用;复合层的变化经历了“快速生长”、“平衡相持”和“迅速回熔”三个阶段,这三个阶段在复合层厚度-浸渍时间图上共同组成具有较长平台 的反向凝固“∩”形特征曲线;较低的钢水温度和较厚的母带有利于增加复合层厚度。  相似文献   

17.
Laboratory-scale experiments were conducted to cast AA3003/AA4045 clad ingots via Fusion? Technology, a novel process developed by Novelis Inc. for the production of aluminum clad materials such as brazing sheet. Experimental results were used to validate a steady-state thermofluids model of the Fusion? Technology co-casting process. The numerical model was able to accurately predict the temperature field within the AA3003/AA4045 clad ingot as well as the shape of the AA3003 liquid sump. The model was also used to quantify the temperature, fraction solid, and velocity fields in a clad ingot cast with an asymmetrical molten metal-feeding system. Feeding of core and clad molten metals at opposite corners of the mold was found to reduce the risks of hot spots and liquid metal breakthrough from the core sump to the clad side of the Fusion? Technology mold. The use of a diffuser for the AA3003 core molten metal and of a vertical feeding tube for the AA4045 clad produced different flow patterns and liquid sump shapes on either side of the mold. The quality of the metallurgical bond at the core/clad interface appeared good near the clad inlet and at the ingot centerline, but poor near the edges of the ingot. SEM–EDS analysis of the chemical composition across the interface showed that a 1 to 20-μm-deep penetration of silicon from the AA4045 clad into the AA3003 core had occurred at visually acceptable interfaces, whereas silicon diffusion across poor interfaces was very limited. A study of the model-predicted fraction solid history at different points along the interface indicated that reheating of the AA3003 core is not required to form a visually acceptable metallurgical bond. However, a sufficient amount of interaction time between the solid AA3003 core shell and the silicon-rich AA4045 clad liquid is required to chemically dissolve the surface of the core and form a good metallurgical bond. An approximate dissolution depth of 750 to 1000 μm was observed along the visually good interface. Partial dissolution of the Mn-rich AA3003 core led to the formation of Al(Mn,Fe)Si intermetallic particles in the AA4045 clad and an increased manganese concentration near the core/clad interface.  相似文献   

18.
进行了TA1/Q235的累积叠轧焊试验,研究了TA1/Q235复合板结合界面组织和Ti,Fe元素的扩散情况.研究结果表明:在实际轧制中要严格控制夹杂的含量,并要采用低温大变形加工、低温累积叠轧的钢-钢结合完全接近基体组织,TA1/Q235的结合机制为裂口结合机制,Ti元素比Fe元素扩散强烈.  相似文献   

19.
 针对油气输送领域对耐H2S腐蚀油气复合管线的需求,采用真空轧制复合技术成功制备出825镍基合金/X65高强管线钢复合板。真空轧制复合技术是基于真空电子束焊接和热轧复合所开发出的一种新型复合技术,在高真空、高温和强塑性变形条件下,复合界面实现优异的冶金结合。采用X65/825合金/825合金/X65的4层对称复合轧制模式,并对复合界面的微观组织和力学性能特征进行分析。研究表明,复合界面连续平直,无孔洞和裂纹等缺陷,镍、铬和铁元素在界面两侧发生明显的扩散,另外复合界面生成一条连续的厚度约为1 μm的TiC薄带,在结合界面离散分布少量的颗粒状Al2O3化合物。界面平均剪切强度为404 MPa,拉剪断裂在复合界面处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号