首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了减少锂离子电池正极材料与电解液的相互作用,用沉淀法在LiNi0.8Co0.2O2表面包覆一层Al2O3,并通过电化学测试、扫描电镜和X射线衍射研究其表面形貌和晶体结构.结果表明,经过表面包覆后,有效地抑制了电解液对正极材料的侵蚀,虽然初始放电容量略有降低,但循环性能明显改善;Al2O3包覆量对LiNi0.8Co0.2O2电化学性能存在影响,包覆量为0.7%(质量分数)的样品性能最优.  相似文献   

2.
采用共沉淀法合成Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体,将前驱体和LiOH混合均匀后经高温煅烧合成了锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2,并对其进行电化学性能检测。试验表明,制备的电池在电压2.8~4.3V(vs.Li/Li+)区间内,0.1C倍率下的首次库伦效率为88.4%;在1C倍率下循环100次后,放电比容量为157.7mAh/g,容量保持率为96.6%。  相似文献   

3.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

4.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

5.
采用二次高温煅烧法制备了三元复合正极材料LiNi0.5Co0.2Mn0.3O2,用SEM、XRD和蓝电测试仪等对其结构和物理化学性能进行表征和测定。结果表明,材料具有较好的层状结构,在2.75~4.25V下0.2C放电容量达到151mAh/g,经50次充放电循环后,放电容量仍为初始放电容量的93%,放电容量保持率较高,是一种电化学性能优良的三元正极复合材料。  相似文献   

6.
采用共沉淀法先合成[Ni_(0.83)Co_(0.11)Mn_(0.06)](OH)_2前驱体,在纯氧气氛下经过两段高温烧结生成LiNi_(0.83)Co_(0.11)Mn_(0.06)O_2正极材料。通过在前驱体配锂烧结过程中加入纳米TiO_2实现了Ti~(4+)掺杂,经过掺杂后的Li[Ni_(0.83)Co_(0.11)Mn_(0.06)]_(0.98)Ti_(0.02)O_2正极材料在1C电流密度下的放电比容量高达185.6mAh/g,循环100圈后容量维持在178.8mAh/g,容量保持率高达96.33%。  相似文献   

7.
论述了近年来元素掺杂改善正极材料LiNi0.8 Co0.2 O2电化学性能的研究现状。对层状结构的稳定性与电化学性能的关系进行了分析,对不同的元素掺杂效果进行了比较。认为在优化合成条件的基础上,元素掺杂是提高锂离子电池正极材料电化学性能最有效的途径之一。  相似文献   

8.
在水溶液体系中,采用化学沉淀法对镍基正极材料LiNi_(0.9)Co_(0.1)O_2进行了MgO表面修饰,研究了MgO修饰量对材料物理和化学性能的影响。采用SEM、XRD、电池测试仪、电化学工作站等研究了材料的物理和化学性能。结果表明,MgO修饰后,材料表面有许多MgO微小颗粒,pH降低,阳离子混排程度降低;当MgO修饰量为1%时有最佳的电化学性能,其首次充放电效率为83%,50周循环后容量保持率为90.7%。  相似文献   

9.
镍钴酸锂的制备与电性能研究   总被引:2,自引:0,他引:2  
以共沉淀法制得前驱体Ni0.8Co0.2(OH)2,再与LiOH.H2O混合通氧气于600℃恒温15h得到LiNi0.8Co0.2O2。X射线衍射分析表明合成的材料LiNi0.8Co0.2O2具有规整的-αNaFeO2层状结构。SEM表明材料颗粒呈类球体,大小均一。以0.1C电流充放电,首次放电比容量为176mA.h/g,循环20次后容量大幅度衰减。交流阻抗图谱表明材料充电态的电化学阻抗明显低于放电态的电化学阻抗。  相似文献   

10.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

11.
阐述了尖晶石材料LiNi0.5Mn1.5O4的晶体结构及其主要制备方法,介绍了纳米合成、元素掺杂、表面修饰等提高材料充放电倍率及改进其电化学性能的研究成果,并展望了该材料在未来先进锂离子电池中的应用前景。  相似文献   

12.
采用碳酸盐共沉淀法合成Li1+xNi0.6Co0.2Mn0.2O2Fx正极材料,研究了不同含量的Li、F复合掺杂对LiNi0.6Co0.2Mn0.2O2样品的晶型结构、形貌以及电化学性能的影响.研究结果表明:Li、F复合掺杂未改变LiNi0.6Co0.2Mn0.2O2样品的层状结构;掺杂后的样品颗粒细化;电化学循环性能和电极过程的可逆性明显得到提高.掺杂量x=0.06时,Li1+xNi0.6Co0.2Mn0.2O2Fx样品的首次充放电容量分别为168,160 mA·h/g,循环50次后容量为153 mA·h/g.  相似文献   

13.
以共沉淀法制备的Ni-Mn包覆Co_3O_4前驱体和Li_2CO_3为原料,通过高温固相法制得了具有核壳结构的锂电池正极材料Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2.用扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射(XRD)和充放电测试表征了样品的形貌、晶体结构和电化学性能.结果表明,所制备的核壳结构Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2具有良好的电化学性能,在3.0~4.5 V和3.0~4.6 V,0.2 C下首次放电容量分别达到180.5 m A·h·g~(-1)和201.3 m A·h·g~(-1),在1 C下,循环50周后容量保持率分别为89.3%和63.3%.  相似文献   

14.
采用两步冷压—烧结法制备了V_2O_5掺杂NiFe_2O_4尖晶石阳极材料,研究在不同烧结条件下,V_2O_5添加剂对NiFe_2O_4尖晶石结构和性能的影响。结果表明,向NiFe_2O_4陶瓷基体中引入V_2O_5后形成了低共熔点物质Ni_2FeVO_6,形成液相烧结,能够促进晶粒生长。试样的气孔率和抗弯强度均随着V_2O_5添加量的增加而不断下降。添加0.5%V_2O_5后,低温条件下烧制所得样品的平均气孔率和抗弯强度与相同条件下制备的无添加剂样品的平均气孔率相近。高温条件下延长烧结时间能够降低样品的平均气孔率,但陶瓷基体内会因为部分晶粒的异常生长导致惰性阳极力学性能的弱化。  相似文献   

15.
采用共沉淀法合成LiNi0.5Mn0.5O2正极材料.采用X射线衍射(XRD)和扫描电镜(SEM)表征合成材料的结构和形貌.研究不同Li/(Mn+Ni)摩尔比、不同焙烧制度、不同化成制度对LiNi0.5Mn0.5O2的电化学性能的影响.结果表明,当Li/(Mn+Ni)摩尔比1.08、一次焙烧温度为500℃,二次焙烧温度为850℃下焙烧得到的材料电化学性能最佳.  相似文献   

16.
采用改进溶胶-凝胶法合成了具有良好的晶体结构和电化学稳定性的正极材料Li[Ni1/3Co1/3Mn1/3]0.9Ti0.1O2,通过优化前驱体的制备来提高原子混合程度,从而达到改善材料循环稳定性的目的。XRD测试表明,样品的Li+/Ni2+混排程度很低,TEM图片显示材料的结晶度很高,原子排列有序,这有利于实现更大的锂离子扩散系数。在0.5 C倍率下循环200次后,材料的容量保持率高达84.6%,与未掺钛的LiNi1/3Co1/3Mn1/3O2仅为52.0%相比,钛掺杂的材料表现出优异的电化学性能。此外,掺钛材料在0.1、0.2、0.5、1.0、2.0和5.0 C时具有更好的充放电倍率性能,分别为164.9、162.4、152.4、142.4、129.7和102.8 mAh/g。研究成果可以为设计具有更好电化学性能的锂离子电池材料提供参考。  相似文献   

17.
采用基于密度泛函理论的第一性原理超软贋势平面波法,对LixNi0.5Mn0.5O2的几何结构进行优化,并计算相应的电子结构和平均嵌锂电压.结果表明:x=1时,费米能级上分布着Ni、Mn d轨道电子和部分O2p轨道电子,层状LiNi0.5Mn0.5O2是电子的良导体;O2p轨道与Ni、Mn形成较强的共价键, Ni-O与Mn-O具有相近的键长,抑制了LiNiO2与m-LiMnO2中的因Jahn-Teller效应导致的八面体扭曲,且Mn-O键长在充放电过程中保持不变,材料具有稳定的结构;Li在晶胞中以主要离子态的形式存在,有利于脱嵌与传输.随着锂离子的脱出,材料的带隙增加,导电性能变差.  相似文献   

18.
利用综合热分析仪研究了O2/N2与O2/CO2气氛下Fe2O3与K2CO3对无烟煤催化燃烧反应性的影响。结果表明,在O2/CO2气氛下,Fe2O3与K2CO3均可以催化无烟煤粉的燃烧,但其催化作用要弱于O2/N2气氛,且在低氧气浓度的O2/CO2气氛下对Fe2O3与K2CO3的抑制作用大于高氧气浓度。氧气浓度为20%~80%时,K2CO3在O2/N2气氛下催化煤粉前期燃烧使燃烧由反应控制转变为扩散控制,Fe2O3则只在氧气浓度为20%时能改变煤粉前期燃烧的控制步骤;而Fe2O3与K2CO3在O2/CO2气氛下均只能在氧气浓度为20%时改变煤粉前期燃烧的控制步骤,由反应控制转变为扩散控制。  相似文献   

19.
以α-Al2O3、TiO2和轻烧MgO为原料,在轻烧MgO含量固定不变的情况下.研究了在1400~1600℃下α-Al2O3和TiO2的加入量对MgO-Al2O3-TiO2材料烧结性能的影响。结果表明:当烧结温度低于1500℃时,随着TiO2含量的增加,Al2O3含量的减少,试样的显气孔率降低,体积密度增加;当烧结温度升高到1600℃时,TiO2的加入使试样的烧结性能稍微变差;且在1600℃保温3h烧后的试样中,随着TiO2含量的增加,Al2O3含量的减少,试样的晶粒尺寸增大,但当Al2O3含量为0时,试样的晶粒尺寸又有所减小。  相似文献   

20.
CeO2-Co3O4 Catalysts for CO Oxidation   总被引:1,自引:0,他引:1  
CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (TPR), and FT-IR, the influence of the cerium content on the catalytic performance of CeO2-Co3O4 was investigated. The results indicate that the prepared CeO2-Co3O4 catalysts exhibit a better activity than that of pure CeO2 or pure Co3O4. The catalyst with the Ce/Co atomic ratio 1 : 16 exhibits the best activity, which converts 77% of CO at room temperature and completely oxidizes CO at 45 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号