首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
电感耦合等离子体质谱法(ICP-MS)在测量痕量铁元素时会受到ArO+多原子离子的严重干扰,碰撞/反应池技术可以有效的去除该干扰。通过对碰撞/反应池工作参数进行探讨,以提高ICP-MS检测铁元素的能力。讨论了NH3、He、H2、N2O以及He-H2和He-NH3混合气6种四极杆碰撞/反应池气体类型及流速、碰撞/反应池RPq值、碰撞/反应池偏置电压(CRO)及四极杆质量分析器偏置电压(QRO)对ArO+干扰去除效果的影响,获得了优化的碰撞/反应池参数。实验表明:0.3 mL/min NH3-1.3 mL/min He混合气条件下得到的铁元素检出限最低;在不同的气体条件下RPq优化值为0.5;CRO及QRO在碰撞模式下优化值分别为-17 V、-7 V,在反应模式及混合气模式下分别为-1 V、-11 V;在优化条件下铁元素的检出限为14 ng/L。  相似文献   

2.
使用传统的电感耦合等离子体质谱法(ICP-MS)测定磷酸中杂质元素存在严重的多原子离子干扰,本文利用碰撞反应界面技术(CRI)有效地消除或降低了多原子离子干扰。实验表明,直接稀释磷酸样品后,采用89Y-115In-209Bi三内标元素可补偿仪器的信号漂移和基体效应;采用无CRI模式可直接测定Mg、Al、Sr、Cd和Pb;采用He作为碰撞反应气可消除V、Cr、Mn、Co、Ni、Cu、Zn和As的质谱干扰,并确定最佳He流量为90 mL/min;采用H2作为碰撞反应气可消除Fe和Se的质谱干扰,并确定最佳H2流量为70 mL/min。方法检出限为0.5~10 ng/g,加标回收率为80%~120%。采用本方法测定工业和食品级磷酸样品,测得结果和其它方法一致,相对标准偏差不大于6.6%(n=6),适用于大批量样品的分析。  相似文献   

3.
高温合金中Co含量较高,采用电感耦合等离子体质谱(ICP-MS)测定高温合金中As时,59Co16O+会严重干扰As的分析,这一直是ICP-MS测定高温合金中痕量As的研究难点。在串联四极杆(MS/MS)模式下向碰撞/反应池内通入O2,设置一级质量过滤器(Q1)m/z=75,75As+可以与O2反应生成75As16O+,而干扰离子不能与O2发生反应,将二级质量过滤器(Q2)设置为m/z=91,仅75As16O+通过并被检测器检测,从而避免了59Co16O+的质谱干扰。据此,建立了电感耦合等离子体串联质谱法(ICP-MS/MS)测定高温合金中痕量As的方法。采用As质量浓度为1.000 ng/mL、Co质量浓度为1.000~1 000 μg/mL的系列标准溶液考察了单四极杆和MS/MS两种模式下Co对As测定的质谱干扰。结果表明,在MS/MS模式下,As的回收率均在100%左右,这说明在MS/MS质量转移模式下,采用O2为反应气,通过两次质量选择,可以成功消除Co基体带来的严重干扰。对O2流速进行了优化,选择O2流速为0.375 mL/min。方法线性范围为1.00~100 ng/mL,线性相关系数为1.000 0,检出限为0.006 7 μg/g,定量限为0.023 μg/g。选择纯钴标准样品为测定对象,按照实验方法对其中As进行测定,并进行加标回收试验,回收率在96%~102%之间。采用所建立的方法对镍基高温合金标准物质和高温合金样品中As进行测定,测定结果分别与认定值或原子荧光光谱法测定值基本一致,实际样品测定结果的相对标准偏差(RSD,n=6)为1.6%~2.8%。  相似文献   

4.
高纯钼中痕量镉因受到钼氧、钼氮等多原子离子的严重干扰,即使采用高分辨质谱仪也无法准确分析。为了有效消除干扰,采用串联质谱的反应池技术,选取111Cd为分析同位素,分别在H2和NH3模式下讨论了1000μg/mL Mo标准溶液和1000μg/mL Mo-1.000ng/mL Cd混合标准溶液的信号强度以及背景等效浓度(BEC)的变化趋势,并优化了气体流速;最终选择0.4mL/min的NH3做反应气,此时1000μg/mL Mo标准溶液中Cd的背景等效浓度约为0.8ng/L,表明钼氧、钼氮等多原子离子对Cd的干扰可被有效地消除。在选定的仪器测试条件下,校准曲线的线性相关系数大于0.9999,方法检出限为2.7ng/g,加标回收率为93%~105%。采用所建立的电感耦合等离子体串联质谱(ICP-MS/MS)测定高纯钼中痕量镉的方法分析高纯钼样品,测得结果的相对标准偏差(RSD,n=5)为0.50%~4.2%。  相似文献   

5.
采用电感耦合等离子体质谱法测定高温合金中痕量P和S时会受到严重的质谱干扰从而影响测定结果。采用王水-氢氟酸溶解样品,在串联四极杆(MS/MS)模式下,先分别设置一级质量过滤器(Q1)的质荷比(m/z)为31和32,接着向碰撞/反应池内通入O2,31P+32S+会与O2反应生成31P16O+32S16O+,而干扰离子不能与O2发生反应,设置二级质量过滤器的质荷比分别为47和48,使得31P16O+32S16O+通过并被检测器检测,从而避免了质谱干扰。据此,建立了电感耦合等离子体串联质谱法(ICP-MS/MS)测定高温合金中痕量P和S的方法。对O2流速进行了优化,选择O2流速为0.375 mL/min。方法线性范围为1.00~100 μg/L,线性相关系数不小于0.999 7,P和S的检出限分别为0.075 μg/g和0.086 μg/g,定量限分别为0.23 μg/g和0.26 μg/g。选择高纯镍标准样品为测定对象,按照实验方法对其中P和S进行测定,并进行空白加标回收试验,回收率在96%~109%之间。采用所建立的实验方法对高温合金标准物质和高温合金样品中P和S进行测定,测定结果分别与认定值、电感耦合等离子体原子发射光谱法或高频燃烧红外吸收法测定值基本一致,实际样品测定结果的相对标准偏差(RSD,n=6)为2.0%~4.7%。  相似文献   

6.
探讨了电感耦合等离子体质谱(ICP-MS)法测定钴酸锂中Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、As、Pd、Ag、Cd、Sn、Au、Pb、Bi等20种杂质元素的分析方法。样品用硝酸+盐酸经微波消解,试液用超纯水稀释后直接用ICP-MS法同时测定上述杂质元素。通过向八极杆碰撞/反应池(ORS)中引入氦气或氢气,消除高盐基体可能带来的多原子离子对待测元素的质谱干扰,选用45Sc、89Y、103Rh、205Tl内标混合液校正基体干扰和漂移。20种待测元素的检出限在0.006~0.41 μg/L之间。对锂离子电池正极材料钴酸锂样品进行精密度和准确度考察,相对标准偏差为1.3%~5.7%,加标回收率为91%~107%。采用实验方法对不同批号的钴酸锂样品进行测定,结果同其他方法(AAS,AFS,ICP-AES)测定值一致。  相似文献   

7.
高纯金属纯度分析时为了克服基体效应的影响,常采用分离基体的方法对其中痕量杂质元素进行分析测定,不仅前处理过程较为复杂,且易造成样品污染。实验以硝酸(1+1)溶解样品,在利用电感耦合等离子体质谱(ICP-MS)半定量法确定高纯银中杂质种类的基础上,通过选择适当的同位素克服了质谱干扰,采用标准加入法绘制校准曲线,在不分离基体的前提下消除了银基体对痕量杂质元素测定的基体效应影响,最终实现了ICP-MS对高纯金属银中铅、砷、铜、镍、锑、锡、钯、铋8种痕量金属杂质的直接定量测定。同时在采用ICP-MS法对高纯金属银中8种痕量金属杂质元素测定后,可根据国标方法GB/T 21198.5—2007中差减法最终计算得到银的纯度。方法的检出限为0.09~1.1 μg/L,将实验方法应用于高纯金属银的实际样品分析,加标回收率为96%~106%,相对标准偏差(RSD,n=6)不大于5.0%。  相似文献   

8.
作为制备氮化铝材料的原料,氮化铝粉体中的杂质金属元素含量会对氮化铝制品的导热和介电性能产生重要影响。实验采用硫磷混酸以超级微波消解法处理样品,解决了氮化铝粉难以溶解完全的问题。选择23Na、182W、54Fe、66Zn、46Ti和55Mn为待测同位素,控制氦气流量为1.52 mL/min、以氦气碰撞池模式(CCT mode)消除质谱干扰,用50 μg/L 89Y校正23Na、54Fe、66Zn、46Ti、55Mn,用50 μg/L 185Re校正182W,建立了碰撞池-电感耦合等离子体质谱法(ICP-MS)测定钠、钨、铁、锌、钛、锰6种杂质金属元素的方法。在优化的实验条件下,6种元素的检出限为0.03~0.64 mg/kg,定量限为0.10~2.13 mg/kg。采用实验方法对氮化铝粉样品进行测定,6种元素测定结果的相对标准偏差(RSD,n=6)均小于4%,加标回收率为96%~103%。采用电感耦合等离子体原子发射光谱法(ICP-AES)和石墨炉原子吸收光谱法进行方法对照试验,测定结果与实验方法基本一致。  相似文献   

9.
作为制备氮化铝材料的原料,氮化铝粉体中的杂质金属元素含量会对氮化铝制品的导热和介电性能产生重要影响。实验采用硫磷混酸以超级微波消解法处理样品,解决了氮化铝粉难以溶解完全的问题。选择23Na、182W、54Fe、66Zn、46Ti和55Mn为待测同位素,控制氦气流量为1.52 mL/min、以氦气碰撞池模式(CCT mode)消除质谱干扰,用50 μg/L 89Y校正23Na、54Fe、66Zn、46Ti、55Mn,用50 μg/L 185Re校正182W,建立了碰撞池-电感耦合等离子体质谱法(ICP-MS)测定钠、钨、铁、锌、钛、锰6种杂质金属元素的方法。在优化的实验条件下,6种元素的检出限为0.03~0.64 mg/kg,定量限为0.10~2.13 mg/kg。采用实验方法对氮化铝粉样品进行测定,6种元素测定结果的相对标准偏差(RSD,n=6)均小于4%,加标回收率为96%~103%。采用电感耦合等离子体原子发射光谱法(ICP-AES)和石墨炉原子吸收光谱法进行方法对照试验,测定结果与实验方法基本一致。  相似文献   

10.
本文介绍了电感耦合等离子体串联质谱(ICP-MS/MS)仪器及技术特点,对近5年来电感耦合等离子体串联质谱在高纯金属及其氧化物、合金、冶金物料中杂质元素的分析,环境样品、食品、植物、中药中痕量元素及同位素分析、元素形态分析,以及化学工业及半导体中无机元素分析等方面的应用进行了概述和总结。展望了电感耦合等离子体串联质谱技术发展及应用前景。  相似文献   

11.
氧化铟锡中杂质元素的含量是衡量其产品性能的重要参数。采用盐酸以微波消解法处理样品,以Cs为内标,氩气模式下测定24Mg、27Al、52Cr、58Ni、63Cu、64Zn、90Zr、208Pb、205Tl、111Cd,氢气碰撞反应池模式测定28Si、40Ca、56Fe,实现了电感耦合等离子体质谱法(ICP-MS)对氧化铟锡靶材(ITO)中镁、铝、硅、钙、铬、铁、铜、镍、锌、锆、镉、铅、铊等13种痕量杂质元素的测定。实验表明,当氧化铟锡基体质量浓度为1.00mg/mL时,基体效应可忽略;13种杂质元素在1.0~100ng/mL范围内线性良好,线性相关系数均大于0.9990。方法检出限为0.002~0.15μg/g,测定下限为0.007~0.50μg/g。将方法应用于氧化铟锡靶材样品中13种痕量杂质元素的分析,相对标准偏差(RSD,n=7)均小于5%,加标回收率为88%~114%。采用实验方法对氧化铟锡靶材样品进行分析,并与电感耦合等离子体原子发射光谱法(ICP-AES)进行比对,二者测定值基本一致。  相似文献   

12.
杂质元素含量对保证高纯二氧化碲产品的纯度具有重要的意义。采用1.0 mL硝酸-5.0 mL盐酸-3.0 mL酒石酸溶液溶解样品,以133Cs为内标元素,用动能歧视碰撞池(KED)模式测定钙、铁和硒,采用标准模式测定其他元素,建立了采用电感耦合等离子体质谱法(ICP-MS)测定高纯二氧化碲中镁、铝、钙、铁、镍、铜、硒、锑、铅、铋等10种杂质元素含量的方法。方法检出限介于0.012~0.21 μg/L之间,方法定量限在0.040~0.59 μg/L之间。按照实验方法对高纯二氧化碲样品进行测定,每个样品平行测定7次,各元素测定结果的相对标准偏差在1.2%~3.4%之间,加标回收率在95%~106%之间。方法可用于纯度为99.999%二氧化碲材料的检测。  相似文献   

13.
电感耦合等离子体质谱法(ICP-MS)测定了烟道灰中In时,多原子分子离子和同量异位素115Sn的干扰不可忽略。采用HCl、HNO3、HF和HClO4溶解烟道灰样品,选择115In为被测同位素,100ng/mL185Re作为内标,以动能歧视碰撞池(KED)消除多原子分子离子干扰,以数学校正方程消除同量异位素115Sn的干扰,实现了电感耦合等离子体质谱法对烟道灰中In的测定。详细考察了115Sn对115In测定的干扰,结果表明,115Sn对115In的干扰量与Sn的含量呈线性相关,因此得到了对115Sn干扰进行校正的数学校正方程。在测定中,考虑到样品溶液中Sn的含量较高,一般超出了ICP-MS的测定范围,故选择以ICP-AES对Sn进行测定,再采用数学校正方程对其干扰进行校正。分别在标准模式和KED模式下对烟道灰样品中In进行了测定,结果表明,KED模式下In的测定结果与对照值(乙酸丁酯萃取-原子吸收光谱法测定值)基本一致,而标准模式下的测定结果相对偏高;同时试验表明,KED模式下In的背景等效浓度和方法检出限约比标准模式低一个数量级。因此实验选用KED模式进行测定并对其条件进行了优化,最终确定碰撞气流量为4.90mL/min。在选定的实验条件下,In质谱强度与其质量浓度在5~100ng/mL范围内呈良好的线性关系,校准曲线相关系数为0.9994,方法检出限为0.0046ng/mL。将实验方法应用于实际烟道灰样品中In的测定,所得结果的相对标准偏差(RSD,n=6)为0.20%~1.3%,加标回收率为98%~102%。  相似文献   

14.
建立了辉光放电质谱法(GD-MS)测定棒状高纯镁中Al、Si、Ca、Cr、Mn、Fe、Ni、Cu、Zn、Sn、Pb、Bi共12种主要杂质元素的方法。试验表明:棒状样品的放电表面积小、放电容易不稳,将放电电流设在47.0mA、气体流量设在599mL/min时,基体信号稳定且强度可满足测试的要求;预溅射15min可完全消除样品表面的Na、Fe、Ca等元素的污染。27Al、28Si、52Cr、55Mn、 56Fe、58Ni、63Cu、64Zn、208Pb、209Bi丰度最高,在中分辨下分析即可得到较好的结果;由于存在40Ar对40Ca的干扰,所以选择44Ca作为分析同位素,在中分辨下进行分析即可得到较好的结果;120Sn与40Ar40Ar40Ar在分辨率大于7960时才能完全分开,所以在高分辨模式下以120Sn为测定同位素进行测定。按照实验方法对棒状高纯镁中12种杂质元素进行测定,相对标准偏差(RSD,n=5)为1.8%~10.9%,所有分析结果的标准偏差(SD,n=5)要小于国家标准方法GB/T 13748中的重复性限量;测定值与电感耦合等离子体质谱(ICP-MS)法及电感耦合等离子体原子发射光谱(ICP-AES)标准加入法的结果进行比对,大部分元素符合性较好,由于棒状镁样品的相对灵敏度因子(RSF)与标准RSF存在差异,Fe、Cu、Zn元素测定值差别较大,但是测定结果对高纯物质纯度定级无太大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号