首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Algal blooms occur frequently in the coastal waters of the western South China Sea (SCS). This paper reports spatial and temporal variations of algal bloom events in these waters from 1993 to 2007. Twenty-five algal bloom events occurred in summer in the coastal waters of South and Central Vietnam where they were associated with wind-induced, coastal, nutrient upwelling and river discharges; a further eight events occurred in the coastal waters of North Vietnam. A greater number of algal bloom events were observed in 1999 and 2002, and were accompanied by several previously unobserved species for the study period. These events may be related to the El Niño events of 1998 and 2002. Furthermore, the bloom-causative species Trichodesmium erythraeum (Cyanophyta) entirely dominated the phytoplankton community of algal blooms during 1993–1999 whereas the species Phaeocystis globosa (Haptophyta) dominated blooms after 2002. This study establishes a basis for further long-term research of algal bloom event variations, and provides a compiled scientific reference that may be used for later prediction of Harmful algal blooms (HABs).  相似文献   

2.
In this study, we simulate three-dimensional transport of algal blooms in Lake Erie using a combination of remote sensing and hydrodynamic modelling. The remote sensing algorithms use data from the Sentinel-3 OLCI satellite sensor to derive chlorophyll-a concentration from cyanobacteria blooms in Lake Erie. The derived chlorophyll-a concentration initializes an algal bloom transport model driven by the lake component of the Water Cycle Prediction System for the Great Lakes, a system of coupled atmosphere-lake-hydrological models operated out of Environment and Climate Change Canada. The bloom is modelled as Microcystis aeruginosa, a buoyant species that is often dominant in harmful algal blooms in western Lake Erie. Short-term (a few days) predictions of algal bloom transport from July 27 to October 8, 2017 are modelled in both Eulerian and Lagrangian frameworks. The Eulerian framework is used to evaluate the sensitivity of model results to the initial vertical distribution of the bloom. In this work, the Lagrangian framework is limited to two-dimensional surface confined particles. We use several error metrics to evaluate model predictions. We find that results are sensitive to the buoyancy velocity for cases where the bloom was initially distributed over a large portion of the water column. An initial vertical distribution selected from modelled chlorophyll-a half depth shows the highest accuracy for the entire range of buoyancy velocities tested. We also find that the Pierce skill score is difficult to interpret, particularly in cases where bloom intensity is greatly overpredicted by the model.  相似文献   

3.
In subtropical coastal waters, the explosive growth of phytoplankton under favorable conditions can lead to water discolouration and massive fish kills. Manual field sampling and laboratory analysis of chlorophyll-a concentration (Chl-a) as an indicator to algal biomass, is resources intensive and time consuming, delaying responses to disastrous harmful algal blooms. Cloudy weather often precludes the use of satellite images for water quality and algal bloom monitoring. This study aims at developing an estimator algorithm for quantitative mapping of surface Chl-a for coastal waters, based on surface reflectance measurement from an Unmanned Aerial Vehicle (UAV) with a five-band multispectral camera. The surface reflectance is obtained from calibrated multispectral images which are radiometric-corrected against incoming solar radiation. It is found that Chl-a has an inverse correlation with the Normalized Green-Red Difference Index (NGRDI). A regression estimator model for Chl-a from NGRDI is developed, showing excellent performance for fish farms in coastal waters with different characteristics. The technology is demonstrated for mapping the spatial and temporal variation of Chl-a during an algal bloom, offering a useful complement to traditional field monitoring for fisheries management and emergency response.  相似文献   

4.
三峡水库大宁河春季水华藻类分布及影响因子   总被引:2,自引:0,他引:2  
以三峡水库支流大宁河2010年3月中旬的水华调查数据为依据,分析浮游藻类分布规律,并探讨其影响因子。结果表明,在容易暴发水华的库湾开阔地带之外,狭窄的峡谷地带亦会暴发严重水华,并且持续时间更长;河口区域的浮游藻类则表现出比其他区域更好的群落稳定性和生物均匀性。在此次水华的前、中期,浮游藻类的群落稳定性随生物量增大而降低;后期则随其增大而增加。通过对样品的定量分析,共鉴定浮游藻类7门24属,主要为绿藻和甲藻,第一优势种为拟多甲藻,占到总藻类的38%,其次为小球藻和衣藻。观察到藻类群体有垂直迁移现象,可能因藻类有趋光性所致。拟多甲藻水华的暴发会降低水体氮磷比,而随着水华的消退,水体氮磷比会较迅速地恢复到一个较高水平。在水华前期,总磷与浮游藻类群落稳定性呈现高度负相关,在中、后期其相关性减弱。  相似文献   

5.
Lake Winnipeg has experienced dramatic increases in nutrient loading and phytoplankton biomass over the last few decades, accompanied by a marked shift in community composition towards the dominance of cyanobacteria. Comprehensive lake-wide observations of algal blooms are critical to assessing the lake's health status, its response to nutrient management practices, and an improved understanding of the processes driving blooms. We present an analysis of the spatial and temporal variability of algal blooms on Lake Winnipeg using satellite-derived chlorophyll and indices for algal bloom intensity, spatial extent, severity, and duration over the period of ESA's MERIS mission (2002–2011). Imagery documented extensive blooms covering as much as 93% of the lake surface. Bloom conditions were analysed in the context of in-lake and watershed processes to gain further insight on the drivers of bloom events. Day to day bloom variability was driven primarily by intermittent wind mixing events, with quiescent periods leading to the formation of dense surface blooms. Seasonal bloom distribution was consistent with light limitation in the south basin and lake circulation transporting bloom material towards the north-east shore. Inter-annual variability in average bloom severity was related to both total phosphorus (TP) loadings and summer lake surface temperatures. Results provide a valuable historical time series of bloom conditions to which ongoing observations from Sentinel-3's OLCI sensor can be added for longer term monitoring and change detection.  相似文献   

6.
河湖水华预测方法研究   总被引:3,自引:0,他引:3  
以水华预测研究方法的发展为主线,着重从机理生态建模和智能方法建模两方面对水华预测方法进行总结。通过对国内外常用预测模型的建立思路和应用实例进行分析和描述,比较了机理模型和智能模型的优缺点和使用范围。最后,针对目前水华预测存在的问题进行了分析,指出机理建模和智能方法的有机结合将为准确预测水华提供有效的途径。  相似文献   

7.
This study investigated the vertical distributions of Microcystis cell density and colony size in Lake Taihu where algal blooms occur frequently. Measurements were made from April 2011 to January 2012 to gain a seasonal outlook on the role of such distributions in the blooms. It was found that large colonies tended to accumulate on the water surface, but the cell density fluctuated widely. The cell density in the water column increased continuously from spring to summer (i.e., April to October) and decreased after late autumn, showing apparent seasonal variations. The abrupt occurrence and disappearance of Microcystis blooms over short periods of time were not caused by the rapid growth of Microcystis but by the rise and accumulation of large Microcystis colonies at the water surface, both of which are affected by colony size. The ascent velocity of large colonies was higher than that of small ones, which enables large colonies to more readily overcome the stirring effects of water flows, waves and perturbations to rise to the surface. The results of canonical correspondence analysis (CCA) of Microcystis vertical distribution in relation to environmental factors suggested that nutrient concentrations and temperature were the main influencing factors related to bloom formation by Microcystis in Lake Taihu during our investigation.  相似文献   

8.
A 2‐D hydrodynamic model was developed for modelling water circulation from 2008 to 2011 in a typical tributary of the Three Gorges Reservoir. The model is capable of describing flow behaviour and mixing mechanisms for different density current patterns and performs well in computing the velocity, the intrusion layer at the plunge point, and the travel distance of the density current. The effects of 10 flow patterns on thermal stratification, hydrodynamics, and algal bloom risk are discussed and classified in terms of algal growth. Patterns (6) and (10) can effectively prevent algal blooms; Patterns (7) and (8) are good for algal blooms. More frequent transformations of flow‐driven patterns, as observed in 2010–2011, could create more eddies and mixing and thus reduce bloom risk. Further studies are necessary and recommended for more accurate predictions, assessing the impact of water level fluctuations on transform flow patterns and water quality.  相似文献   

9.
Despite significant declines in external phosphorus loads, Lake of the Woods continues to experience severe recurring cyanobacterial harmful algal blooms (cHABs) covering as much as 80% of the lake surface area. Satellite-derived bloom indices were used to assess the status, trends, and drivers of cHAB conditions for the period 2002 to 2021 in support of developing ecosystem objectives and response indicators for the lake. Areas of greatest potential concern, with the most prolonged bloom occurrences, were in the southeast of the lake. Significant decreases in bloom indices suggest the lake may now be responding to historical nutrient reductions. The greatest rates of decrease were within the main water flow paths, with little change in the more isolated embayments, suggesting flushing plays a key role in regulating regional bloom severity. Significant inter-annual variability in bloom phenology was observed, with blooms peaking later in recent years, which may be in response to climate-induced changes in the lake and watershed. The absence of a direct relationship between external phosphorus loads and annual bloom severity reflects the complexity of the lake’s response to eutrophication and the potential roles of other drivers including climate and a strong legacy effect of sedimentary nutrients. A case study of the 2017 bloom season captures the compounding interaction of meteorological variability and seasonal nutrient delivery in regulating the bloom response. Results highlight the need for greater understanding of seasonal and regional variability of bloom drivers to aid in forecasting the lake’s recovery under both nutrient management and climate change scenarios.  相似文献   

10.
Nutrient load estimation in nonpoint source pollution of Hong Kong region.   总被引:3,自引:0,他引:3  
Red tides and eutrophication have been frequently observed over the past two decades in coastal waters around Hong Kong, which are caused by many factors and one of them is the nutrient from nonpoint source pollution (NSP). This paper concentrates on the nutrients carried by river flow from watersheds. Since there are no systematical data sets of nonpoint source pollution in Hong Kong, monthly river water quality measurements, rainfall and river flow data, land uses, and other related information are used to analyze the characteristics of NSP and estimate the nutrient loads for Hong Kong region. Main achievements are as follows: firstly, besides mean concentration for single land use, the concept of integrated mean concentration for mixed land uses was proposed and applied. Secondly, mean concentrations were carried out for different land uses (agriculture, town, grassland, shrubland and woodland), each Water Control Zone, and Hong Kong region. Thirdly, the annual nutrient loads were estimated, for the first time in this paper, with various methods for the whole area of Hong Kong, and about 8000 tons of TN and 1500 tons TP are transported into coastal waters from Hong Kong's land in 1998.  相似文献   

11.
水体富营养化所引起的藻华爆发现象是我国面临的重大环境问题之一。以内蒙古呼伦湖为研究区,采用基于离散粒子群优化的光谱匹配(SMDPSO)算法提取藻华,以浮游藻类指数(FAI)的分类结果作为验证数据进行精度检验。然后分析2009-2018年藻华的时空变化特征,并将此算法应用于黄海。结果表明:SMDPSO算法可以有效地识别呼伦湖藻华,与FAI分类结果之间的R2为0.97,RMSE为0.22 km2;呼伦湖藻华爆发于7-8月,且主要出现在湖泊边缘;SMDPSO算法既可以较好地识别以蓝藻为优势门的呼伦湖藻华,也可以提取黄海的浒苔(绿藻);SMDPSO算法不仅保留了光谱指数法精度高的特点,而且它还具有成本低、参数少、无需人工干预的优势。该研究为藻华遥感监测提供了新的工具,有助于控制湖泊水体富营养化和改善水生态环境。  相似文献   

12.
13.
三峡水库支流水华机理及其调控技术研究进展   总被引:13,自引:1,他引:12  
三峡水库自2003年蓄水以来,水库干支流水环境状况及支流水华问题已成为广泛关注的问题,国内外不少科研单位及学者对此进行了大量的研究。本文在介绍三峡水库蓄水以来水库水质状态及支流水华情势的基础上,系统总结了关于三峡水库干支流水动力特征及其环境效应、水华机理及其调控措施的研究发现,并提出了有待进一步研究的内容。主要研究发现包括:(1)三峡水库蓄水后支流库湾普遍存在分层异重流现象,产生的原因是干支流温度差及泥沙浓度差引起的水体密度差,其中水体温度差是主要因素;(2)在分层异重流的驱动下,支流库湾水体呈现"双混斜"及"半U"型特殊水体分层模式,支流库湾营养盐也主要来自于水库干流倒灌;(3)流速变缓只是支流暴发水华的表观原因,分层异重流驱动下的混合层(Zm)与临界层(ZCr)的关系变化才是决定水华生消的关键;(4)水库水位升降可通过影响分层异重流的形态、改变支流水体分层状态进而调控支流水华的生消过程,基于此提出了防控支流水华的"潮汐式"生态调度方法。如何将上述新发现上升为具有三峡水库特色的系统理论与方法,实现支流水华的精准预测预报,开展能够协调水库传统效益和防控支流水华等生态效益的三峡及上游梯级水库群联合多目标优化调度实践,应是今后进一步努力的方向。  相似文献   

14.
Harmful algal blooms (HABs) have become a major health and environmental concern in the Great Lakes. In 2014, severe HABs prompted the State of Ohio to request NASA Glenn Research Center (GRC) to assist with monitoring algal blooms in Lake Erie. The most notable species of HAB is Microcystis aeruginosa, a hepatotoxin producing cyanobacteria that is responsible for liver complications for humans and other fauna that come in contact with these blooms. NASA GRC conducts semiweekly flights in order to gather up-to-date imagery regarding the blooms' spatial extents and concentrations. Airborne hyperspectral imagery is collected using two hyperspectral imagers, HSI-2 and HSI-3. Hyperspectral imagery is necessary in order to conduct experiments on differentiation of algal bloom types based on their spectral reflectance. In this analysis, imagery from September 19, 2016 was utilized to study the subpixel variability within the footprint of arbitrary sized pixels using several analysis techniques. This particular data set is utilized because it represents a worst case scenario where there is significant potential for public health concern due to high concentrations of microcystin toxin found in the water on this day and the concurrent observational challenges to accurately measure the algal bloom concentration variability with a remote sensing system due to the blooms high spatial variability. It has been determined that the optimal spatial resolution to monitor algal blooms in the Great Lakes is at most 50 m, and for much lower error 25 m, thus allowing for greater ease in identifying high concentration blooms near the surface. This resolution provides the best sensitivity to high concentration areas that are of significant importance in regard to human health and ecological damage.  相似文献   

15.
微囊藻水华暴发会加剧水质恶化,影响用水安全,破坏水生态系统平衡,威胁人类健康,是全球普遍面临的水生态灾害之一。微囊藻水华暴发的水动力机理与模拟是开展相关水华防治的关键,是当前环境与生态水力学研究的前沿热点与难点。本文对国内外微囊藻水华暴发的水动力机理与模拟研究工作进行了梳理,包括:归纳了微囊藻自主迁移的生物学机制;总结了静水环境下微囊藻个体与群体的垂向迁移机制;梳理了风生流、异重流等典型流态下微囊藻聚集的水动力机理;从粒子模型与连续介质模型角度,阐述了微囊藻迁移分布模拟方法以及应用;凝练了微囊藻水华暴发水动力机理与模拟研究领域未来需要解决的若干关键问题。  相似文献   

16.
A particle tracking model (PTM) is linked with a hydrodynamic model to evaluate mean seasonal circulation patterns in Lake Ontario, and also to provide a basis for predicting movement of algal blooms. The PTM is based on a random walk algorithm that combines a deterministic advective component with a stochastic component associated with the turbulent diffusivity field to calculate trajectories of neutrally buoyant particles, where both the advective and diffusive velocities are obtained from the hydrodynamic model. Mean circulation is calculated using 30-year average meteorological forcing data collected from five stations around the lake. Seasonal variations in lake circulation are demonstrated, and a clockwise flow in the eastern basin during summer and early fall is identified, contrary to some previous observations that suggest counterclockwise flow. The impacts of Niagara and St. Lawrence river flows on general lake circulation are found to be small, except within approximately 10 km of the river mouth. Development and application of the PTM demonstrate its potential to provide calculations of (Lagrangian) movements as determined from the hydrodynamic output, and to serve as a first step toward development of an algal transport model. Particle tracking helps to visualize flow patterns and provides a means of evaluating the probability a bloom will reach a specified area, given an initial position and the predicted velocity and diffusivity fields. This capability, when set up for real-time applications, can provide an important tool to support management decisions that may be needed when a bloom is observed, for example in predicting potential impacts of the bloom on a beach or a water intake.  相似文献   

17.
三峡水库自建成运行以来,澎溪河流域富营养化问题日益突出。本研究在2014年4-7月易发生水华的春夏时期进行,对澎溪河流域藻类群落结构特征及水质状况进行跟踪分析。结果表明:水华发生时,水环境特征发生显著变化,水质状况恶化,藻细胞密度急剧升高,藻细胞密度最高达到1176×104cells/L,水华藻种为角甲藻和铜绿微囊藻,藻种种类单一,藻类多样性显著变低。空间分布上,藻细胞密度从上游向下游呈增高趋势。相关性分析表明:藻细胞密度与TN、TP呈显著正相关,藻类大量增殖爆发与水体营养盐浓度升高具有重要联系,澎溪河流域水华问题的防治有赖于对流域内营养盐排放的有效治理。  相似文献   

18.
Satellite remote sensing methods adopting wavelengths in the red and near infra-red have been shown to be superior to the standard blue to green ratio based approaches in the detection of algal blooms under turbid, eutrophic conditions. Here, the MERIS Maximum Chlorophyll Index (MCI) has been explored as a tool for monitoring algal blooms in North America's inland waters where waters range from optically complex, turbid, eutrophic conditions, to low chlorophyll and oligotrophic conditions. Assessment of the MERIS MCI product is made for intense blooms of cyanobacteria in Lake of the Woods, algal blooms in turbid waters of Lake Erie, and low chlorophyll conditions in Lake Ontario. The MCI product is shown to be a versatile tool in monitoring intense surficial algal blooms with chlorophyll concentrations in the 10–300 mg m? 3 range, while limited in its application to low-biomass conditions as observed in Lake Ontario. Wavelength shifts in the position of the MCI peak for different chlorophyll concentration ranges, as well as variations in the inherent optical properties of water colouring constituents, are anticipated to account for regional variations in MCI–chlorophyll relationships and potentially hinder a universally applicable quantitative MCI product.  相似文献   

19.
Ben Chifley Reservoir, the only potable water supply for Bathurst, New South Wales, Australia, has been experiencing recurrent cyanobacterial bloom problems since 1991. A study was undertaken from June 1998 to July 1999 to assess the limnological characteristics pertinent to eutrophication and the associated cyanobacterial blooms. From January–May 1999, the reservoir exhibited significant numbers of cyanobacterial cells, totalling > 9000 cells mL?1. The highest number of cells (> 27 000 cells mL?1) was recorded during April 1999. The water quality characteristics of the reservoir, and the river inflow and climatic data, were grouped into three distinct periods; before, during and after cyanobacterial blooms. High water temperature (15–22°C), thermal stratification (ΔT = 2.7–2.8°C), depletion of dissolved oxygen and high nutrient concentrations, all of which are conducive to enhanced cyanobacterial blooms, were evident before and during the bloom periods. Based on its nitrogen to phosphorus molar ratio, Ben Chifley Reservoir can be considered as being phosphorus‐deficient, in contrast to nitrogen, which is readily available from a number of sources in its drainage basin, including atmospheric fixation. Thus, it is recommended that adopting management strategies to reduce the quantity of bioavailable phosphorus in the reservoir would be the most effective way to minimize the occurrence of algal blooms.  相似文献   

20.
The Australian Government's Coastal Catchment Initiative (CCI) seeks to achieve targeted reductions in nutrient pollution to key coastal water quality hotspots, reducing algal blooms and fish kills. Under the CCI a Water Quality Improvement Plan (WQIP) is being prepared for targeted estuaries (Swan-Canning, near Perth, and the Vasse-Geographe, 140 km south of Perth) to address nutrient pollution issues. A range of projects are developing, testing and implementing agricultural Best Management Practices (BMPs) to reduce excessive loads of nutrients reaching the receiving waters. This work builds on progress-to-date achieved in a similar project in the Peel-Harvey Catchment (70 km south of Perth). It deals with the necessary steps of identifying the applicability of BMPs for nutrient attenuation, developing and promoting BMPs in the context of nutrient use and attenuation on farm and through catchments and estimating the degree to which BMP implementation can protect receiving waters.With a range of BMPs available with varying costs and effectiveness, a Decision Support System (DSS) to guide development of the WQIP and implementation of BMPs to protect receiving waters, is under development. As new information becomes available the DSS will be updated to ensure relevance and accuracy for decision-making and planning purposes. The DSS, calibrated for application in the catchments, will play a critical role in adaptive implementation of the WQIP by assessing the effect of land use change and management interventions on pollutant load generation and by providing a tool to guide priority setting and investment planning to achieve agreed WQIP load targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号