首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
塔基(桥墩)的局部冲刷问题是跨河工程规划、设计中需考虑的重要课题。受限于地形、地质、经济条件等因素,斜交塔基(桥墩)逐渐用于跨河工程中。然而,目前研究侧重正交塔基(桥墩)的局部冲刷问题,对斜交塔基局部冲刷规律研究较少,因此,以某斜交塔基工程为例,通过概化模型试验研究了斜交塔基的局部冲刷规律。研究结果表明:与正交塔基相比,斜交塔基偏向侧流速增幅大于塔基背向侧流速;冲刷坑最大冲刷深度较大,且最大冲刷位置位于塔基偏向侧;冲刷坑呈不对称的马蹄形,且塔基偏向侧冲刷范围大于背向侧;塔基防护后,以上趋势减弱。研究成果为解决跨江大桥或电缆通道建设中的斜交塔基局部冲刷问题提供了参考借鉴。  相似文献   

2.
冬季寒冷的北方河流易形成冰盖或冰塞,冰盖的存在对桥墩附近局部冲刷产生影响。在清水冲刷条件下,试验研究了有无冰盖条件下,不同流速和水深对桥墩附近局部冲刷的影响。研究结果表明:对比明流条件,冰盖的存在导致更大的近底流速和近底流速梯度,从而桥墩局部最大冲刷深度更大;其它条件相同的情况下,随流速的增大,桥墩局部最大冲刷深度增大;随着桥墩墩径增大,桥墩局部最大冲刷深度增加;水深增加时桥墩局部最大冲刷深度相对减小。根据试验数据,给出了有冰盖条件下桥墩局部最大冲刷深度的计算公式,与国内外相关试验数据吻合较好。  相似文献   

3.
桥墩的局部冲刷导致河床形态变化和桥墩基础埋深减小是桥梁水毁的主要原因。在大涡模拟(Large Eddy Simulation,LES)的基础上结合水流运动方程和泥沙运动的动理学理论系统地对桥墩基础处的水流冲刷问题进行全时段全方位的三维数值模拟。得到了桥墩基础处的湍流流场流线图及河床形态变化的高程图。重点研究了水流流速和河床颗粒中值粒径对桥墩周边局部冲刷的影响。结果表明:冲刷坑的深度随着初始流速的增大而增加,且冲刷坑形成速度加快;冲刷坑的深度随着河床颗粒中值粒径的减小而增大,但是当颗粒的中值粒径小到一定程度时,由于泥沙颗粒之间的黏聚力增大导致冲刷坑的深度反而减小。  相似文献   

4.
为了保证郑焦铁路黄河大桥桥梁基础安全,同时尽量避免桥梁基础因设计偏于安全而造成工程投资的增加,按单宽流量、河势以及桥墩防护的多种组合,开展了桥墩基础局部冲刷试验研究,分析了桥墩局部冲刷的水流现象、冲刷坑形态和冲刷深度。结果表明:局部冲刷最深点在承台下的桩群之间,略偏向桥轴线上游部位;墩后形成带状淤积体,淤积体随单宽流量的增大而增大。水流方向与桥轴线正交时,桥墩周围的局部冲刷坑形态基本沿桥墩轴线对称分布;水流方向与桥轴线法线存在夹角时,冲坑范围扩大、冲坑深度明显增深,桥墩两侧马蹄形旋涡不再对称分布。墩前抛石护底后,局部冲刷坑深度明显变浅。  相似文献   

5.
圆柱桥墩局部冲刷机理试验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为进一步探索圆柱桥墩局部冲刷机理,分别从桥墩附近水流流速分布特性、桥墩冲刷特性以及冲刷与流速相互关系对圆柱桥墩顺水流向不同布置方式的局部冲刷水力学特征进行了模型试验研究.结果表明:两排10桥墩顺水流(桥墩轴向与水流方向夹角分别为90°,60°,30°,0°)均匀布置时,桥墩轴向与流向夹角越小,流速在桥墩上下游紊动越小,对下游影响范围越大,且流速越大,冲刷深度和范围越大.顺水流布置0°夹角时,冲刷程度最小,在相同流量下,冲刷稳定历时最短;垂直布置(90°夹角)时,冲刷程度最严重,所需冲刷稳定历时最长,且随着流量的增大,桥墩墩前冲刷坑最深位置逐渐向水槽中间偏移.  相似文献   

6.
大桥复合桥墩局部冲刷深度的计算分析   总被引:2,自引:1,他引:1  
桥墩的冲刷毁坏是桥梁失事的重要原因。为保证桥梁安全,需要准确评价桥墩冲刷深度。本文结合某跨海大桥,使用较为可靠的HEC-18公式对其复合桥墩的局部冲刷深度进行研究。计算结果表明,该大桥最大的可能局部冲刷深度发生在主桥主墩,复合桥墩中群桩部分造成的冲刷深度为桥墩冲刷的主要部分,且随流速增大,其在总冲刷深度中所占比例也增大,总冲刷深度对承台吃水深度变化不敏感。进一步分析表明,复合桥墩的冲刷深度随水流斜交角的变化规律与简单桥墩有较明显区别,关系更为复杂。  相似文献   

7.
桥墩基础施工河床局部冲刷研究   总被引:4,自引:2,他引:2  
天然河流中水流受到建筑物的阻碍时,产生紊动涡旋,局部河床泥沙在水流紊动剪应力作用下起动,并被涡旋流带向下游,建筑物局部河床因此受到侵蚀而下降,形成局部冲刷坑。跨河大桥桥墩的局部冲刷就是如此。桥墩及其基础与水深或河床的相对位置影响着局部冲刷深度的发展。本文通过室内试验研究了桥墩下部钢围堰基础施工的相对高程对河床局部冲刷最大深度的影响,探讨了工后钢围堰顶部处于相对水深的不同高度时局部冲刷发展的规律,并将这些影响因素用墩形系数法计入局部冲刷深度计算中,给出了计算公式。本文的研究对目前跨江及跨海大尺度桥墩基础工程施工具有指导意义。  相似文献   

8.
现行规范护岸工程冲刷坑深度计算公式主要针对桥梁墩台冲刷模型而总结提出的,对平顺护岸工程并不适用。通过理论计算与实测资料的对比分析,论述了冲刷坑计算公式的适用性,提出了冲刷坑计算应用的建议。  相似文献   

9.
王军  李志颀  程铁杰  隋觉义 《水利学报》2021,52(10):1174-1182
在寒冷地区,河道中冰盖的存在会改变河道流速分布。与明流条件相比,冰盖条件下水流最大流速点会向河床移动,加剧桥墩周围的局部冲刷。过度的局部冲刷会导致桥梁倒塌。基于水槽清水冲刷试验,对冰盖与明流条件下圆柱型桥墩局部冲刷随时间的变化进行了研究,试验结果表明:冰盖下桥墩局部冲刷速率大于明流。平衡冲刷深度比明流条件下的约大12%,且冲刷平衡所需时间比明流条件下的要约大10%。分析了水流强度与无量纲冲刷深度的关系以及冰盖与明流条件下冲刷深度变化速率的差异,给出了冰盖下局部冲刷深度随时间变化的经验方程,研究成果可供实际工程参考。  相似文献   

10.
丁坝坝头冲刷坑的终极深度及其过程   总被引:2,自引:0,他引:2  
根据丁坝坝头局部冲刷的终级冲深和冲刷坑深度的发展规律,计算了丁坝坝头局部冲刷在一次水文过程中的最大深度,并用此方法估算了长江口航道整治工程中16条整治丁坝坝头冲刷坑的深度,与崇明岛丁坝调查结果相比较,估算结果是合理的。  相似文献   

11.
钱塘江河口河床是冲淤变幅大的地区,过江隧道最大冲刷深度常成为工程设计的关键参数之一。以青年路过江隧道为例,运用正态水槽模型试验,分别模拟了过江隧道河段的自然冲刷和邻近涉水工程如丁坝引起的局部冲刷,分析两类冲刷对隧道的影响,并从工程安全出发,提出了最大冲刷深度的确定方法,与其他研究手段比较,结果较为一致,可为过江隧道、海底管线等隧道的合理设计提供科学依据。  相似文献   

12.
环翼式桥墩局部冲刷防护试验   总被引:1,自引:1,他引:0       下载免费PDF全文
基于桥墩局部冲刷原理,在传统防冲刷保护措施的基础上设计了一种能改变桥墩迎水面流态的新型环翼式桥墩,在不同流速、有无环翼式挡板以及不同的挡板位置下,试验研究了环翼式桥墩的局部防冲刷效果。研究结果表明,环翼式挡板可有效减小桥墩的局部冲刷,当桥墩上的挡板与河床的距离约为水深的1/3时,与无挡板的桥墩相比近底垂向流速最大可减小96%,最大冲坑深度可减小57.6%,环翼式桥墩防冲刷效果明显。  相似文献   

13.
在我国近海海域,跨海桥梁基础冲刷是影响大桥安全的重要因素之一。基于金塘大桥2014、2015和2017年桥墩基础冲刷实测资料,并结合建桥前地形测验资料进行了案例分析,解析出了往复潮流条件下桥墩基础的一般冲刷及局部冲刷深度,金塘大桥中引桥桥墩一般冲刷深度为3.3~3.6 m,平均局部冲刷深度约8.3 m。往复潮流条件下桥墩基础局部冲刷坑受双向潮流影响向上下游延伸,形状呈椭圆形,各墩冲刷坑纵向长度与最大局部冲刷深度呈近似线性关系,长度约为局部冲刷深度的10~12倍,而各墩冲刷坑横向宽度则基本一致,约为桥墩基础宽度的4~5倍,与最大局部冲刷深度无明显相关性。跨海桥梁基础冲刷深度计算方法及冲刷坑形态特征的研究成果可供跨海大桥基础设计、运行维护及基础冲刷防护参考。  相似文献   

14.
桥墩局部冲刷防护的石块起动   总被引:4,自引:0,他引:4  
桥墩局部冲刷一直是影响桥梁安全的最大自然灾害,抛石防护是最普遍的冲刷防护形式之一。在总结已有冲刷机理的基础上,分析了包括墩前河床底部流速和墩侧河床底部流速的桥墩局部流速,并给出了桥墩冲刷防护石块起动的简化公式。结果表明,墩侧河床底部流速大于墩前河床底部流速,墩侧防护石块更易走失。当行近流速小于3m/s时,可采用抛石进行桥墩局部冲刷防护,抛石直径约为0.2m;对于行近流速为3~5m/s时,建议采用其它冲刷防护措施。  相似文献   

15.
基于波浪水槽,分别考虑独栋和房屋群两种情况,开展海啸波引起的近岸房屋局部冲刷试验研究,分别建立了独栋房屋情况下相对最大冲刷深度与海啸波相对越顶高度关系式和房屋群情况下局部最大冲刷深度与海啸波波高、房屋宽度、房屋高度、房屋数量、房屋间的中心间距的关系式。试验结果表明在海啸波越顶水流产生的水跌以及海啸波通过房屋时产生的扰流共同作用下,房屋周围,特别是海侧会产生明显的局部冲刷坑;回落水流水跌是局部冲刷坑产生的主要因素,扰流是次要因素。所建立的关系式揭示了最大局部冲刷深度与海啸波、房屋尺寸、房屋布局的内在联系。  相似文献   

16.
桥墩基础局部冲刷深度是确定基础埋深和保证桥梁安全运营的重要参数。针对桥墩基础局部冲刷深度不同的计算公式在量纲和谐、一般冲刷深度及河床形态和床沙组成对局部冲刷深度的影响进行对比分析,并结合工程算例,对计算结果进行对比。研究表明:对于单墩桥墩,HEC-18公式和包尔达柯夫公式计算较为简便,且HEC-18公式的计算结果偏安全;对于复杂群桩承台桥墩,中国铁道科学研究院新公式比较规范,采用公式所考虑的因素更多,结果更安全。  相似文献   

17.
为了研究明渠砂质床面桩柱冲刷的水沙动力机理,分析极限平衡冲刷深度和范围随水流雷诺数的变化规律以及抗冲刷导流防护措施的效果,利用动床模型水槽试验,再现了桩柱周围局部床面从平整发展到冲刷坑的发育过程,测量了各工况下冲刷坑的形态参数,并利用PIV技术观测粗颗粒泥沙局部悬扬运动。结果表明:桩柱冲刷范围(相对于桩径D)随雷诺数ReD增大呈减小趋势。当雷诺数ReD在4 500~18 000之间变化时,冲刷深度变化范围为2.4D~1.3D,冲刷坑半径变化范围为4.5D~2.5D。砂质床面桩柱冲刷除存在显著的推移质运动外,还存在局部粗泥沙颗粒悬扬,且悬扬输沙的范围和强度随冲刷坑发展而强烈变化。在桩柱后方设置导流板能够有效抑制柱后卡门涡街的生成,桩后冲刷深度最大减小幅度为27.7%,但对柱前冲刷深度的影响不大。  相似文献   

18.
基于Melville桥墩局部冲刷试验模型,采用FLOW-3D软件,利用大涡模拟方法模拟了桥墩绕流局部冲刷过程,通过分析冲刷坑形态、深度的变化过程,评价了Meyer-Peter和Van Rijn推移质输沙率公式在桥墩绕流局部冲刷模拟中的适用性,并结合两输沙率公式结构分析了模拟结果存在差异的原因。结果表明:大涡模拟方法能够有效模拟桥墩绕流的复杂流态,采用Meyer-Peter推移质输沙率公式的局部冲刷模拟结果较好,预测的冲刷坑形态更接近试验观测结果;当时间为30 min时,最大冲刷深度与试验观测结果相对误差为2.3%。采用Van Rijn推移质输沙率公式的预测结果相对较差,最大冲刷深度与试验观测结果相对误差为15.5%。  相似文献   

19.
根据模型试验对长管袋沉排护岸冲刷机理进行了研究,认为:长管袋沉排护岸的冲刷以水流直接冲淘和螺旋流淘刷形式为主;冲刷坑深度主要受来流流速和入流角度影响,并成正比关系;冲刷坑形状与传统平顺抛石护岸相似,为平行于护岸轴线的长条状冲坑,但冲刷坑深度大于传统抛石护岸;长管袋沉排护岸对水流的扰动小,冲刷坑深度比长管袋沉排丁坝浅,可使工程少抢险甚至不抢险。  相似文献   

20.
射阳港进港航道工程导堤堤头冲刷试验研究   总被引:1,自引:0,他引:1  
采用潮流定床模型和局部动床模型,研究了射阳港进港航道工程潮流特征和导堤堤头冲刷问题。试验结果表明:工程区域内潮流特性发生显著变化,堤头扰流流速较大,悬沙分布和海床也相应变化,堤头海床会形成范围深度和较大的冲刷坑,设计防护设施坍塌,需对防护方案进行进一步优化,以确保建筑物结构的安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号